matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHochizontal-Vertikaltangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Hochizontal-Vertikaltangente
Hochizontal-Vertikaltangente < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hochizontal-Vertikaltangente: ... 2 Tangenten
Status: (Frage) beantwortet Status 
Datum: 15:31 Fr 10.06.2005
Autor: pisty

Hallo,

es geht um folgende Aufgabe, wo ich schon einen Lösungsansatz habe, aber nicht sicher bin wie ich weiter fortfahre.

Gegeben ist die Kurve
[mm] x(t)=sin(2t+\pi/4) [/mm]
[mm] y(t)=\sin [/mm] t
(t  [mm] \in [/mm] R) .


Finden Sie alle Parameterwerte, für die die Kurve in den zugehörigen
Punkten eine Horizontal- oder Vertikaltangente hat.
Es gibt einen Punkt P in der x-y-Ebene, in dem die Kurve zwei
Tangenten hat. Ermitteln Sie die Gleichungen beider Tangenten.
Fertigen Sie eine Skizze der Kurve an.



zu der Horizontaltangente / Vertikaltangente:

erstmal die Ableitungen von  x(t) und  y(t)


x'(t) [mm] =2cos(2t+\pi/4) [/mm]
y'(t) [mm] =\cos [/mm] t

über die Formel bei der HT: y'= (y')/(x') =! 0
ergibt sich ein [mm] t1=\pi/2 [/mm]

-> x(t1)=-0,7071  
-> y(t1)=1


und für die Vertikaltangente

ergibt sich ein [mm] t2=\pi/8 [/mm]

-> x(t1)= 1
-> y(t1)= 0,3827

wie mache ich nun mit dem 2. Teil weiter, bei dem es einen Punkt P gibt, indem die Kurve 2 Tangenten hat? UNd wie komme ich auf die Gleichung der Tangenten?

        
Bezug
Hochizontal-Vertikaltangente: Hinweis
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 10.06.2005
Autor: MathePower

Hallo pisty,

> Gegeben ist die Kurve
>   [mm]x(t)=sin(2t+\pi/4)[/mm]
> [mm]y(t)=\sin[/mm] t
>  (t  [mm]\in[/mm] R) .
>  
>
> Finden Sie alle Parameterwerte, für die die Kurve in den
> zugehörigen
>  Punkten eine Horizontal- oder Vertikaltangente hat.
>  Es gibt einen Punkt P in der x-y-Ebene, in dem die Kurve
> zwei
>  Tangenten hat. Ermitteln Sie die Gleichungen beider
> Tangenten.
>  Fertigen Sie eine Skizze der Kurve an.
>  
>
>
> zu der Horizontaltangente / Vertikaltangente:
>  
> erstmal die Ableitungen von  x(t) und  y(t)
>  
>
> x'(t) [mm]=2cos(2t+\pi/4)[/mm]
>   y'(t) [mm]=\cos[/mm] t
>  
> über die Formel bei der HT: y'= (y')/(x') =! 0
>  ergibt sich ein [mm]t1=\pi/2[/mm]
>  
> -> x(t1)=-0,7071  
> -> y(t1)=1
>  
>
> und für die Vertikaltangente
>  
> ergibt sich ein [mm]t2=\pi/8[/mm]
>  
> -> x(t1)= 1
> -> y(t1)= 0,3827
>  

in der Aufgabenstellung heißt es alle Parameterwerte.
Die Periodizität des cos muß schon berücksichtigt werden.

> wie mache ich nun mit dem 2. Teil weiter, bei dem es einen
> Punkt P gibt, indem die Kurve 2 Tangenten hat? UNd wie
> komme ich auf die Gleichung der Tangenten?  

Es gibt offenbar gleiche Punkte, die unterschiedlichen Parametern entsprechen.

Es gibt also [mm]t_{1} \; \ne \;t_{2} [/mm] mit:

[mm]\begin{gathered} x\left( {t_1 } \right)\; = \;x\left( {t_2 } \right) \hfill \\ y\left( {t_1 } \right)\; = \;y\left( {t_2 } \right) \hfill \\ \end{gathered} [/mm]

Dieses Gleichungssystem gilt es zu lösen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]