matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorie"Hineinziehen" der Wurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - "Hineinziehen" der Wurzel
"Hineinziehen" der Wurzel < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Hineinziehen" der Wurzel: Abschätzung Ungleichg. Varianz
Status: (Frage) beantwortet Status 
Datum: 23:52 So 24.10.2010
Autor: Bappi

Ich versuche mir grad zu erklären, ob folgende Aussage immer Gültigkeit besitzt:

[mm] \sqrt{\int f(x)\, \mu(\mathrm dx)} \leq \int \sqrt{f(x)}\, \mu(\mathrm [/mm] dx)

Bis jetzt konnte ich noch mein Gegenbeispiel finden, meine Idee war:

Es gilt ja gerade |x| = [mm] \sqrt{x^2}, [/mm] und wir wissen [mm] \left|\int f\, \mathrm d\mu\right| \leq \int |f|\,\mathrm d\mu. [/mm] Folgt dies dann nicht direkt daraus?


(Noch eine Kleine Anmerkung. Eigentlich zu zeigen ist in [mm] L_0^2 [/mm] := [mm] \{X \in L^2 : \mathbb EX = 0\} [/mm] gilt: [mm] \sqrt{\mathbb V\sum_1^n X_j} \leq \sum_1^n\sqrt{\mathbb VX_j}) [/mm]


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=430769
jedoch keine Reaktion.

        
Bezug
"Hineinziehen" der Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Mo 25.10.2010
Autor: Gonozal_IX

Huhu Bappi,

wer sagt dir denn, dass [mm] \sqrt{f} [/mm] überhaupt definiert ist?
Beispielsweise könnte f stückweise negativ sein, und dann?

MFG,
Gono.

Bezug
        
Bezug
"Hineinziehen" der Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:25 Mo 25.10.2010
Autor: fred97


> Ich versuche mir grad zu erklären, ob folgende Aussage
> immer Gültigkeit besitzt:
>  
> [mm]\sqrt{\int f(x)\, \mu(\mathrm dx)} \leq \int \sqrt{f(x)}\, \mu(\mathrm[/mm]


Diese Ungl. ist i.a. falsch:  Nimm [mm] f(x)=x^2 [/mm] auf dem Intervall [0,1]


FRED



> dx)
>  
> Bis jetzt konnte ich noch mein Gegenbeispiel finden, meine
> Idee war:
>  
> Es gilt ja gerade |x| = [mm]\sqrt{x^2},[/mm] und wir wissen
> [mm]\left|\int f\, \mathrm d\mu\right| \leq \int |f|\,\mathrm d\mu.[/mm]
> Folgt dies dann nicht direkt daraus?
>  
>
> (Noch eine Kleine Anmerkung. Eigentlich zu zeigen ist in
> [mm]L_0^2[/mm] := [mm]\{X \in L^2 : \mathbb EX = 0\}[/mm] gilt: [mm]\sqrt{\mathbb V\sum_1^n X_j} \leq \sum_1^n\sqrt{\mathbb VX_j})[/mm]
>  
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://www.matheboard.de/thread.php?threadid=430769
>  jedoch keine Reaktion.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]