matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteHilfe bei Übungsaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Hilfe bei Übungsaufgabe
Hilfe bei Übungsaufgabe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Übungsaufgabe: Idee
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 11.09.2007
Autor: Burli

Aufgabe
Also,

wir sollen die folge a(n) auf Monotonie und auf Schranken untersuchen und beides nachweisen
[mm] a(n)=\wurzel{n+1}-\wurzel{n} [/mm]

also,

die folge ist mono. fallend.
um nachzuweisen --> a(n+1)-a(n)< (gleich) 0

nur wie bring ich dies in eine form, um leicht zu erklären, dass dies kleiner null ist. die wurzel stören mich immer so

würde mich sehr um hilfe freuen

        
Bezug
Hilfe bei Übungsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Di 11.09.2007
Autor: Somebody


> Also,
>  
> wir sollen die folge a(n) auf Monotonie und auf Schranken
> untersuchen und beides nachweisen
>  [mm]a(n)=\wurzel{n+1}-\wurzel{n}[/mm]
>  also,
>
> die folge ist mono. fallend.
> um nachzuweisen --> a(n+1)-a(n)< (gleich) 0
>  
> nur wie bring ich dies in eine form, um leicht zu erklären,
> dass dies kleiner null ist. die wurzel stören mich immer
> so

Die Wurzeln kriegst Du so weg
[mm]a_n=\sqrt{n+1}-\sqrt{n}=\big(\sqrt{n+1}-\sqrt{n}\big)\cdot\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}[/mm]

In dieser letzten Form von [mm] $a_n$ [/mm] kannst Du Monotonie und Grenzwert sogleich ablesen.


Bezug
                
Bezug
Hilfe bei Übungsaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Di 11.09.2007
Autor: Burli

zwischen der ausgangsformel und dem endergebnis stimmt aber meinung nach etwas nicht.


ich habs mehrmals in meinen taschenrechner eingegeben, aber der meint, dass dies nicht wahr sei...

Bezug
                        
Bezug
Hilfe bei Übungsaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Di 11.09.2007
Autor: schachuzipus

Hallo Burli,

sag besser, der Meinung deines TR nach ;-)

Die Umformung von Somebody ist richtig.

Er hat [mm] \sqrt{n+1}-\sqrt{n} [/mm] extra so erweitert, damit er die 3. binomische Formel anwenden konnte.

Ich schreibs mal mit noch nem Zwischenschritt:

[mm] \sqrt{n+1}-\sqrt{n}=\left(\sqrt{n+1}-\sqrt{n}\right)\cdot{}\underbrace{\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}}_{\text{der Bruch ist = 1}}=\frac{(\sqrt{n+1}-\sqrt{n})\cdot{}(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}=\frac{\overbrace{(n+1)-n}^{\text{3.binomische Formel}}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}} [/mm]


Ich würde mal behaupten, du hast dich vertippt ;-)

Vllt. ne Klammer vergessen?

LG

schachuzipus

Bezug
                                
Bezug
Hilfe bei Übungsaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Di 11.09.2007
Autor: Burli

vielen dank für die schnelle reaktion von euch beiden.......





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]