matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHilfe bei Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Hilfe bei Ungleichung
Hilfe bei Ungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mo 03.07.2006
Autor: x3n4

Aufgabe
bestimmen sie die reelle lösungsmenge der betragsungleichung

18 - (x + 6)² > |3x+18|

Hallo liebe Comunity,

ich habe die Lösung schon ausgerechnet, bin mir aber nicht wirklich sicher, ob es das richtige Ergebnis ist.

Meine Lösung ist [mm] $\IL=\{x \in \IR | -6>x>-9\}$. [/mm] Könnte dies bitte jemand nachrechnen und gegebenen falls korregieren?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hilfe bei Ungleichung: etwas anderes Ergebnis
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 03.07.2006
Autor: Roadrunner

Hallo x3n4!


Leider hast Du uns Deine Zwischenschritte nicht verraten. Ich erhalte jedoch ein etwas anderes Ergebnis mit

[mm]\IL \ = \ \{x \in \IR \ | \ \red{-3}>x>-9\}[/mm]

[Dateianhang nicht öffentlich]


Gruß vom
Roadrunner


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Hilfe bei Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Mo 03.07.2006
Autor: x3n4

oh entschuldige, hier mein rechenweg:

fall 1. 3x+18>0
x>-6

-x²-12x-36 > 3x
-x²-15x>36
-x(x+15)>36

x<-36

x+15>36
x>21
[mm] \IL={} [/mm]

fall 2:

3x+18<0
x<-6

-x²-12x>-3x
-x²-9x>0
-x(x+9)>0

x<0

x+9>0
x>-9

[mm] \IL [/mm] = {-6>x>-9}

gesamt: [mm] \IL [/mm] = {-6>x>-9}

Bezug
                        
Bezug
Hilfe bei Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 03.07.2006
Autor: Walde

Hi x3n4,

> oh entschuldige, hier mein rechenweg:
>  
> fall 1. 3x+18>0
>  x>-6
>  
> -x²-12x-36 > 3x
>  -x²-15x>36

Ab hier wirds falsch. Du musst einfach

-x²-15x-36>0
[mm] \gdw [/mm] x²+15x+36<0

lösen und zwar mit der p,q-Formel erst die NST bestimmen:
x=-3 und x=-12

Und da die Gleichung eine nach oben geöffnete Parabel ist, ist sie für
-12<x<-3 unterhalb der x-Achse, gleichzeitig muss noch x>-6 gelten.
[mm]\IL=\{x\in\IR:-6

>  
> fall 2:
>  
> 3x+18<0
>  x<-6
>  


-x²-12x>-3x
    -x²-9x>0

>  -x(x+9)>0

[mm] \gdw [/mm] x(x+9)<0
  
Fall A :
x<0 und [mm] x+9>0\gdw [/mm] x>-9, also  -9<x<0

Fall B:
x>0 und x+9<0 [mm] \gdw [/mm] x<-9, also Leere Menge

gleichzeitig muss noch x<-6 gelten, also
[mm] \IL=\{x\in\IR:-9
Beide Lösungen aus Fall 1 und Fall 2 zusammen ergibt:

[mm] \IL=\{x\in\IR:-9
L G walde



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]