matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenHilfe bei Rekursionsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Hilfe bei Rekursionsgleichung
Hilfe bei Rekursionsgleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Rekursionsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 29.05.2008
Autor: Sharadix

Hallo, ich benötige Hilfe zur Lösung einer Rekursionsgleichung. Per Master-Theorem(falls das wem was sagt), komme ich irgendwie auf keinen grünen Nenner. Ich glaube die Aufgabe lässt sich leider nicht mit dem Master-Theorem lösen....
Jetzt habe ich mal versucht die ersten paar Folgeglieder auszurechnen um dort irgend ein Muster zu erkennen. Ich habe n durch [mm] 2^n [/mm] ersetzt, damit man beim teilen von T(n/2) keinen nonsense bekommt.

Also hier mal mein Ansatz:
T(n)=2*T(n/2)+c*n*log(n)
[mm] T(2^n)=2*T(2^{n-1})+c*2^n*(log(2^n)) [/mm]
[mm] T(2^0)=1 [/mm]
[mm] T(2^1)=(2*1)+c*2^1(log(2^1))= [/mm]
[mm] T(2^2)=2*( 2+c*2^1*(log(2^1)))+c*2^2*(log(2^2)) [/mm]
[mm] T(2^3)=2*(2*( 2+c*2^1*(log(2^1)))+c*2^2*(log(2^2)))+c*2^3*(log(2^3)) [/mm]

[mm] f(2^n)? [/mm]
f(n)?

Ja, leider, wie man sieht ist mir das Muster leider verborgen geblieben.

Falls jemand einen besseren Vorschlag hat, wie ich bei der Aufgabe ans Ziel komme, (also andere angehensTaktik) oder falls mir jemand bei meinem Ansatz helfen könnte (im Falle des Falles, der Anfang und die Strategie stimmt so), dann tue er bitte Kund :). Ich bin grade mal wieder am Verzweifeln und Haare verlieren und wäre im Sinne meines eigenen Wohlergehens und dem meiner immer lichter werdenden Haare sehr dankbar.



        
Bezug
Hilfe bei Rekursionsgleichung: ausrechnen
Status: (Antwort) fertig Status 
Datum: 07:48 Fr 30.05.2008
Autor: Loddar

Hallo Sharadix!


Um ein Muster erkennen zu können, musst Du die einzelnen Term [mm] $T\left(2^n\right)$ [/mm] auch mal ausrechnen / zusammenfassen.

Da habe ich dann erhalten:
[mm] $$T\left(2^1\right) [/mm] \ = \ [mm] 2*\left[1+1*c*\log(2)\right]$$ [/mm]
[mm] $$T\left(2^2\right) [/mm] \ = \ [mm] 4*\left[1+3*c*\log(2)\right]$$ [/mm]
[mm] $$T\left(2^3\right) [/mm] \ = \ [mm] 8*\left[1+6*c*\log(2)\right]$$ [/mm]
[mm] $$T\left(2^4\right) [/mm] \ = \ [mm] 16*\left[1+10*c*\log(2)\right]$$ [/mm]
[mm] $$\vdots$$ [/mm]
[mm] $$T\left(2^n\right) [/mm] \ = \ [mm] 2^n*\left[1+c*\log(2)*\summe_{k=1}^{n}k\right] [/mm] \ = \ [mm] 2^n*\left[1+\bruch{n*(n+1)}{2}*c*\log(2)\right]$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]