matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenHilfe! Eulersche Differential.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Hilfe! Eulersche Differential.
Hilfe! Eulersche Differential. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe! Eulersche Differential.: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 18:33 Mi 12.07.2006
Autor: Jan2006

Hallo!

Ich habe folgende Aufgabe, als Vorbereitung auf ein Klausur.


Löse die Eulerschen Differentialgleichungen:
1. [mm] x^{2}y''+3xy'+y=0 [/mm]

2. [mm] x^{2}y''+3xy'+y=x^{3} [/mm]

3. [mm] x^{2}y''+2xy'-2y=x^{5} [/mm] mit Hilfe der Variation der Konstanten (steht nur bei Aufgabe 3, bei 1. und 2. Aufgabe steht einfach nur "löse")

Kann mir jemand bitte ausführlich helfen, am Besten so, als wäre ich im Kindergarten (ernst gemeint)! Vielleicht ist da ja auch alles dasselbe und ich kapier's einfach nicht?!?

In meinem Script steht, dass man den Ansatz [mm] y=x^{\alpha} [/mm] wählen soll. Daraus ergibt sich: [mm] y'=\alpha*x^{\alpha-1} [/mm] und [mm] y''=\alpha*(\alpha-1)*x^{\alpha-2} [/mm] . Und nun muss man y, y' und y'' in die Ausgangsgleichung [mm] (x^{2}y''+3xy'+y=0) [/mm] einsetzen. Leider weiß ich nun auch schon nicht mehr weiter... gibt es einen großartigen Unterschied zwischen 1. und 2. Aufgabe?

Vielen, vielen Dank im Voraus!

Jan

        
Bezug
Hilfe! Eulersche Differential.: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 18:53 Mi 12.07.2006
Autor: Event_Horizon


> In meinem Script steht, dass man den Ansatz [mm]y=x^{\alpha}[/mm]
> wählen soll. Daraus ergibt sich: [mm]y'=\alpha*x^{\alpha-1}[/mm] und
> [mm]y''=\alpha*(\alpha-1)*x^{\alpha-2}[/mm] . Und nun muss man y, y'
> und y'' in die Ausgangsgleichung [mm](x^{2}y''+3xy'+y=0)[/mm]
> einsetzen. Leider weiß ich nun auch schon nicht mehr
> weiter... gibt es einen großartigen Unterschied zwischen 1.
> und 2. Aufgabe?
>  

Ja, was passiert beim Einsetzen deiner Ansätze?

beispielsweise hast du dann da stehen: [mm] $3x\alpha*x^{\alpha-1}=3\alpha*x^{\alpha}$ [/mm]
Du bekommst überall ein [mm] x^{\alpha} [/mm] heraus, und wenn du dadurch dividierst, hast du eine Gleichung da stehen, in denen nur die Variable [mm] \alpha [/mm] steht. Die mußt du berechnen, und wieder in deinen Ansatz für y einsetzen, das ist die Lösung.

Die 2. DGL ist da etwas schwerer, aber: Wenn du eine spezielle Lösung für diese Gleichung hast, mußt du noch die Lösung der 1.DGL hinzuaddierern, denn die Lösung einer inhomogenen DGL ist ja die spezielle Lösung + die Löung für die homogene DGL.

Die erste DGL ist ja auch die homogene Version der 2.

EDIT: Das ist ja nur ein kleiner Tipp, ich kann den Beitrag nicht mehr als TEILantwort markieren, daher als nicht fertig...

Bezug
                
Bezug
Hilfe! Eulersche Differential.: Einsetzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:13 Do 13.07.2006
Autor: Jan2006

Also ich bekomme beim Einsetzen von y, y' und y'' folgendes heraus:

  [mm] x^{2}*(\alpha*(\alpha-1)*x^{ \alpha - 2 }) [/mm] + [mm] 3*x*(\alpha*x^{\alpha- 1})+ x^{\alpha}=x^{3} [/mm]
= [mm] x^{2}*(\alpha^{2}+2* \alpha+1)=x^{3} [/mm]

ja... und nun?


Bezug
                        
Bezug
Hilfe! Eulersche Differential.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Do 13.07.2006
Autor: Event_Horizon

Du hattest mich falsch verstanden, dies war ein Vorschlag für die erste Gleichung:

$ [mm] x^{2}\cdot{}(\alpha\cdot{}(\alpha-1)\cdot{}x^{ \alpha - 2 })+3\cdot{}x\cdot{}(\alpha\cdot{}x^{\alpha- 1})+ x^{\alpha}=0 [/mm] $

$ [mm] \alpha\cdot{}(\alpha-1)\cdot{}x^{ \alpha}+3\cdot{}\alpha\cdot{}x^{\alpha}+ x^{\alpha}=0 [/mm] $

$ [mm] \alpha\cdot{}(\alpha-1)+3\cdot{}\alpha+ [/mm] 1=0 $

$ [mm] \alpha^2+2\cdot{}\alpha+ [/mm] 1=0 $

[mm] $\alpha=-1 \pm \wurzel{1-1}=-1$ [/mm]

Bei der zweiten und dritten Gleichung funktioniert das nicht.




Bezug
                                
Bezug
Hilfe! Eulersche Differential.: Lösungen fallen weg
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Do 13.07.2006
Autor: mathemaduenn

Hallo Event_Horizon,
Das Problem bei diesem Ansatz ist das nicht alle Lösungen berechnet werden.
(Modulo Rechenfehler) löst auch [mm] \bruch{\ln x}{x} [/mm] die DGL.
viele Grüße
mathemaduenn

Bezug
        
Bezug
Hilfe! Eulersche Differential.: andere Substitution
Status: (Antwort) fertig Status 
Datum: 09:06 Do 13.07.2006
Autor: mathemaduenn

Hallo Jan,
Deine Substitution ist imho nicht zielführend.
Benutze [mm] x=e^t [/mm] , [mm] u(t)=y(e^t) [/mm]
[mm] u'(t)=y'(e^t)*e^t=y'(x)*x [/mm]
u''(t)=...
Es ergibt sich eine lineare DGL mit konstanten Koeffizienten.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]