matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische GeometrieHilbertschen Nullstellensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebraische Geometrie" - Hilbertschen Nullstellensatz
Hilbertschen Nullstellensatz < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilbertschen Nullstellensatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:09 Mi 25.04.2018
Autor: noglue

Aufgabe
Sei K ein beliebiger Körper und [mm] a=(a_1,...,a_n)\in A^n_K [/mm] ein Punkt. Zeige

[mm] I(\lbrace a\rbrace)=\langle x_1-a_1,...,x_n-a_n\rangle [/mm]

Hallo,

meine Überlegung:

Sei [mm] \mathfak{m}:=\langle x_1-a_1,...,x_n-a_n\rangle [/mm] maximales Ideal von [mm] K[x_1,...,x_n]. [/mm] Nach Hilbertschen Nullstellensatz gilt dann [mm] V(\mathfrak{m})\not=\emptyset. [/mm] Für jedea [mm] a\in V(\mathfrak{m}) [/mm] gilt also [mm] \mathfrak{m}\subset I(\lbrace a\rbrace). [/mm] Da [mm] \mathfrak{m} [/mm] maximal ist folgt [mm] I(\lbrace a\rbrace)=\langle x_1-a_1,...,x_n-a_n\rangle [/mm]

Ist das richtig?

        
Bezug
Hilbertschen Nullstellensatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 27.04.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Hilbertschen Nullstellensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Fr 04.05.2018
Autor: felixf

Moin

> Sei K ein beliebiger Körper und [mm]a=(a_1,...,a_n)\in A^n_K[/mm]
> ein Punkt. Zeige
>  
> [mm]I(\lbrace a\rbrace)=\langle x_1-a_1,...,x_n-a_n\rangle[/mm]
>  
> Hallo,
>  
> meine Überlegung:
>  
> Sei [mm]\mathfak{m}:=\langle x_1-a_1,...,x_n-a_n\rangle[/mm]
> maximales Ideal von [mm]K[x_1,...,x_n].[/mm] Nach Hilbertschen
> Nullstellensatz gilt dann [mm]V(\mathfrak{m})\not=\emptyset.[/mm]

Der Körper $K$ ist nicht algebraisch abgeschlossen, womit du den Nullstellensatz hier nicht verwenden kannst.

Du brauchst folgende beiden Zutaten:
a) [mm] $x_i [/mm] - [mm] a_i$ [/mm] liegt in [mm] $I(\{ a \})$ [/mm] für alle $i$;
b) das Ideal [mm] $\mathfak{m}$ [/mm] ist maximal (zeige, dass [mm] $\mathfak{m}$ [/mm] der Kern vom Auswertungshomomorphismus $f [mm] \mapsto [/mm] f(a)$ ist, und wende dann den Homormophiesatz an).

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]