matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesHilberts drittes Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Hilberts drittes Problem
Hilberts drittes Problem < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilberts drittes Problem: Verständnis eines Beweisteils
Status: (Frage) überfällig Status 
Datum: 19:00 So 27.05.2012
Autor: Ranwo

Aufgabe
Halten sie einen Tafelvortrag über Hilberts drittes Problem aus "Das BUCH der Beweise".
In dem Problem wurde dazu aufgefordert ”zwei Tetraeder mit gleicher Grundfläche und gleicher Höhe anzugeben, die sich auf keine Weise in kongruente Tetraeder zerlegen lassen und die sich auch durch Hinzufügung kongruenter Tetraeder
nicht zu solchen Polyedern ergänzen lassen, für die ihrerseits eine Zerlegung in kongruente Tetraeder möglich ist.“

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Community,

ich soll einen Tafelvortrag halten und bin damit auch schon recht weit gekommen, es gibt jedoch zwei Stellen an denen ich noch hake. Zu einer gehört meine folgende Frage:
Das Problem wird mithilfe des sogenannten "Perlen-Lemmas", des "Kegel-Lemmas" und der Bricard'schen Bedingung bewiesen.
Mein Problem liegt bei der Bricard'schen Bedingung.
Dort heißt es in dem Buch:
"Wieder unter Verwendung des Perlen-Lemmas platzieren wir Perlen auf alle Kantenabschnitte in allen vier Zerlegungen, wobei wir die zusätzliche Bedingung verlangen, dass jede Kante von P' dieselbe Anzahl von Perlen in beiden Zerlegungen bekommt, und genauso für Q'. (Der Beweis des Perlen-Lemmas mit Hilfe des Kegel-Lemmas lässt solche zusätzlichen Bedingungen zu!)"
Ich verstehe einfach nicht wie das Perlen-Lemma dies zulässt und was damit gemeint ist, dass "jede Kante von P' dieselbe Anzahl von Perlen in beiden Zerlegungen bekommt".

Ich denke man kann hier nur helfen, wenn man zufällig schon einmal die richtige Ausgabe des Buches gelesen hat, denn es ist nur eine Art dies zu beweisen. Ich weiß nicht wie ich das Problem genauer schildern könnte.
Meine Idee dazu wäre allerdings folgende:
Jede Außenkante von P' (und analog Q') bekommt in beiden Zerlegungen dieselbe Anzahl von "Perlen". Dies zu erreichen wäre kein Problem, dieser Gedankengang war bis jetzt allerdings nicht sehr fruchtbar.

Ich wäre dankbar für Anregung jeglicher Art!

Herzliche Grüße

Sven

        
Bezug
Hilberts drittes Problem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 31.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]