matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisHilbertraum , Orthonormalbasis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Hilbertraum , Orthonormalbasis
Hilbertraum , Orthonormalbasis < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilbertraum , Orthonormalbasis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 02:34 Do 09.12.2004
Autor: liuhuanan21

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Sei (H,< . , .> ) ein Hilbertraum und sei [mm] (e_{k})_{ k\in \IN} [/mm]  eine Orthonormalbasis von H.Dann ist F:H [mm] \to l^{2} [/mm] , f [mm] \mapsto () _{k\in\IN} [/mm] ein isometrischer Isomorphismus.

Ich habe  etwase Meinungen. Zu zeigen , ist F linear und bijektiv .
Aber wie soll ich detailliert machen .


Gruß
huanan

        
Bezug
Hilbertraum , Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Fr 10.12.2004
Autor: Gnometech

Gruß!

Also, per Definition ist die Form in einem Hilbertraum bilinear, damit insbesondere linear in der ersten Komponente - und nach Definition der Vektorraumstruktur auf [mm] $l^2$ [/mm] folgt die Linearität von $F$ sofort.

Die Injektivität ist auch ganz leicht - jetzt wo man weiß, dass $F$ linear ist, muß man sich ja nur noch den Kern ansehen... was gilt denn für ein $f [mm] \in [/mm] H$ mit [mm] $\langle [/mm] f, [mm] e_k \rangle [/mm] = 0$ für jedes $k [mm] \in \IN$...? [/mm]

Die Surjektivität ist etwas kniffliger, da mußt Du ein $f$ entsprechend konstruieren - wie genau habt ihr [mm] $l^2$ [/mm] definiert? Das sollte da eingehen.

Wenn dies alles gezeigt ist, dann weiß man schonmal, dass $F$ ein Isomorphismus ist. Damit es eine Isometrie ist, fehlt aber noch etwas - und auch dafür braucht  man die Definition von [mm] $l^2$ [/mm] so wie ihr sie gemacht habt...

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]