matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesHessische Normalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Hessische Normalform
Hessische Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessische Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Mi 03.11.2010
Autor: Joan2

Hallo,

ich soll den Normalenvektor bestimmen von:
[mm] \overrightarrow{a} [/mm] = [mm] \vektor{0\\ 0}, \overrightarrow{b} [/mm] = [mm] \vektor{-1\\ 2}, \overrightarrow{c} [/mm] = [mm] \vektor{1\\ 3} [/mm]

Als Gleichungssysteme habe ich heraus:
[mm] -n_1 [/mm] + [mm] 2n_2 [/mm] = 0
[mm] n_1 [/mm] + [mm] 3n_2 [/mm] = 0

D.h. aber, dass der Normalenvektor

[mm] \overrightarrow{n} [/mm] = [mm] \bruch{1}{\wurzel{0}} \vektor{0\\ 0} [/mm]

ist. Das ist doch nicht lösbar. Habe ich was falsch gerechnet?


Viele Grüße,
Joan

        
Bezug
Hessische Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mi 03.11.2010
Autor: Schadowmaster

Ich glaube eher du hast was falsch verstanden...
Der Vektor [mm] $\vektor{0\\0}$ [/mm] hat natürlich keinen Normaleneinheitsvektor, sprich egal mit welcher Zahl du ihn erweiterst, seine Länge wird nie 1.
Ich nehme einfach mal ganz dreist an, dass der Aufgabensteller das auch wusste und die Aufgabe von daher etwas anders gemeint ist.
Diese drei Vektoren spannen nämlich eine Ebene auf.
Und zu einer Ebene kann man sehr schön einen Normaleneinheitsvektor finden.
Also frag am besten nochmal nach wie das gemeint war und/oder nimm die Ebene und rechne dazu den Normaleneinheitsvektor aus (Tipp: der steht senkrecht auf beide Richtungsvektoren der Ebene ;) ).


edit: bzw. ich frage mich gerade echt wie du auf deine Gleichungen gekommen bist...

Bezug
        
Bezug
Hessische Normalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:49 Do 04.11.2010
Autor: fred97

Du schreibst: " Hessische Normalform"

Wie kommst Du darauf. Die Normalform kommt nicht aus Hessen !  Sie kommt aus Sachsen.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]