matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe für's Abi 2008Hessen: Gk A1 e-Funktion TR
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe für's Abi 2008" - Hessen: Gk A1 e-Funktion TR
Hessen: Gk A1 e-Funktion TR < Mathe für's Abi '08 < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe für's Abi 2008"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessen: Gk A1 e-Funktion TR: Übungsaufgabe (aktuell)
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 13:00 Fr 01.12.2006
Autor: dietlind

Aufgabe
Dem menschlichen Körper können Medikamente durch einen Tropf kontinuierlich zugeführt
werden. Zu Beginn weist der Körper keine Medikamentenmenge auf, nach In-Gang-Setzen
des Tropfes erhöht sich die Medikamentenmenge mit jedem Tropfen, aber zugleich beginnen
Nieren und Leber die Substanz wieder auszuscheiden.

Die Funktion m: $t [mm] \to [/mm] m(t)$ , t in Minuten, m in Milligramm gemessen, gebe die Medikamentenmenge
im Körper an.

a. Erläutern Sie die Bedeutung der Ableitungsfunktion m’ für oben beschriebenen
Wachstumsprozess.

b. Für ein bestimmtes Medikament gelte $m'(t) = [mm] e^{-0,02 t}$. [/mm]
Bestimmen Sie m(t) unter der Voraussetzung, dass der Tropf zur Zeit t = 0 gestartet wird.

Es gilt fortan: $m(t) = 50 (1 - [mm] e^{-0,02 t})$ [/mm] .

c. Zeichnen Sie die Graphen von m und m’ für einen sinnvollen Zeitraum und interpretieren
Sie deren Verlauf bezüglich der Medikamentenzufuhr.

d. Erläutern Sie, dass [mm] \limes_{t\to\infty}{m(t)}=50 [/mm] gilt.

Bestimmen Sie den Zeitpunkt, zu dem die Medikamentenmenge 90% dieses Grenzwertes
erreicht und den, von dem ab der Zuwachs des Medikaments weniger als 0,5 mg pro Minute beträgt.

e. Berechnen Sie [mm] \integral_{0}^{10}{e^{-0,02t}\ dt} [/mm] . Erläutern Sie die Bedeutung dieser Zahl.

f. Nach 5 Stunden wird der Tropf abgesetzt. Der Abbau des Medikaments erfolgt danach
mit einer Halbwertszeit von 6 Stunden.
Bestimmen Sie den Zeitpunkt, von dem ab die Nachweisgrenze des Medikaments von
1 μg [mm] (10^{-3} [/mm] mg) im Körper unterschritten wird.




Vorbereitung Abitur

        
Bezug
Hessen: Gk A1 e-Funktion TR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Do 28.02.2008
Autor: defjam123

a)

Die Funktion des Wachstumsprozess zeigt und den momentanen Bestand. Die Ableitung dieser Funtkion zeigt uns die momentane Änderungsrate.

b)
Hier müssen wir die Stammfunktion von $m'(t) = [mm] e^{-0,02 t}$ [/mm]
Diese lauet [mm] m(t)=-\bruch{1}{0,02}*e^{-0,02t} [/mm]
So erhalten wir für [mm] m(0)=-\bruch{1}{0,02} [/mm]

Dieses Ergebnis zeigt uns damit, dass noch kein Medikament beim Zeitpunkt null wirkt.

Mein Ergebnis ist aber falsch? Wie mach ich die b richtig?



Bezug
                
Bezug
Hessen: Gk A1 e-Funktion TR: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Do 28.02.2008
Autor: XPatrickX

Hi!

> a)
>  
> Die Funktion des Wachstumsprozess zeigt und den momentanen
> Bestand. Die Ableitung dieser Funtkion zeigt uns die
> momentane Änderungsrate.
>  
> b)
>  Hier müssen wir die Stammfunktion von [mm]m'(t) = e^{-0,02 t}[/mm]
>  
> Diese lauet [mm]m(t)=-\bruch{1}{0,02}*e^{-0,02t}[/mm]

Nein, die Stammfunktion lautet: [mm] $m(t)=-\bruch{1}{0,02}*e^{-0,02t} [/mm] + c $ mit [mm] c\in\IR. [/mm]
Wähle jetzt c so, dass $m(0) = 0$.

>  So erhalten wir für [mm]m(0)=-\bruch{1}{0,02}[/mm]
>  
> Dieses Ergebnis zeigt uns damit, dass noch kein Medikament
> beim Zeitpunkt null wirkt.
>  
> Mein Ergebnis ist aber falsch? Wie mach ich die b richtig?
>  
>  

Gruß Patrick

Bezug
                        
Bezug
Hessen: Gk A1 e-Funktion TR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 28.02.2008
Autor: defjam123

danke!

dann erhalte ich für meine Stammfuntkion [mm] m(t)=\bruch{1}{0,02}-\bruch{1}{0,02}e^{-0,02t} [/mm]

jetzt ist es richtig?

Gruss

Bezug
                                
Bezug
Hessen: Gk A1 e-Funktion TR: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Do 28.02.2008
Autor: XPatrickX

Ja! Wenn du bedenkst, dass 1/0,02=50 und du diese 50 ausklammerst, dann kommst du auch auf das Kontrollergebnis in der Aufgabe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe für's Abi 2008"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]