matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelHesse-Normalenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - Hesse-Normalenform
Hesse-Normalenform < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hesse-Normalenform: Umschreiben
Status: (Frage) beantwortet Status 
Datum: 23:21 Mo 11.05.2009
Autor: core_1

Wenn ich eine Ebene in der Koordinatenform habe

zum Beispiel --> E:1x+2y+3z=1


Wenn ich das in die (Hesse)Normalenform überführe:

kommt ja E:( [mm] \vektor{x \\ y\\x}-\vektor{1\\ 0\\0})*\vektor{\bruch{1}{\wurzel{14}}\\ \bruch{2}{\wurzel{14}}\\\bruch{3}{\wurzel{14}}} [/mm]


Nun ist mir schon mal vorgekommen, dass jemand die Koordinatenform so um geschrieben hat

--> [mm] \bruch{1}{\wurzel{14}}(1x+2y+3z-1)=0 [/mm]


Meine Frage ist, wie das  gemacht wurde...

das mit dem [mm] \bruch{1}{\wurzel{14}} [/mm] kann ich mir mit dem Distributivgesetz erklären, aber das andere hmm...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Ich glaub ich habs...das ist einfach die Koordinatendarstellung der HNF und die andere ist die vektorielle, wenn man die vektorielle ausmultipliziert, kommt man auf die Koordinatendarstellung?

        
Bezug
Hesse-Normalenform: 2 Schritte
Status: (Antwort) fertig Status 
Datum: 00:25 Di 12.05.2009
Autor: Loddar

Hallo core,

[willkommenmr] !!


Zunächst wurde die $1_$ auf die linke Seite gebracht. Anschließend wurde die Gleichung durch die Länge desjenigen Normalenvektors geteilt, den man aus der Koordinatenform ablesen kann:
$$E \ : \ 1x+2y+3z \ = \ 1$$
[mm] $$\Rightarrow [/mm] \ [mm] \vec{n}_E [/mm] \ = \ [mm] \vektor{1\\2\\3}$$ [/mm]
[mm] $$\Rightarrow [/mm] \ [mm] \left|\vec{n}_E\right| [/mm] \ = \ [mm] \left|\vektor{1\\2\\3}\right| [/mm] \ = \ [mm] \wurzel{1^2+2^2+3^2} [/mm] \ = \ [mm] \wurzel{14}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Hesse-Normalenform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:40 Di 12.05.2009
Autor: core_1

Hallo,

soweit war ich auch schon =), hätte ich evt. noch dazu schreiben sollen.

Mir geht es eher darum, warum ich die Hesse-Normalenform auch so umschreiben kann, warum das so funktionier.  Eine Herleitung wäre nicht schlecht!

in Büchern findet man ja meistens diese Form: [mm] E:(\overrightarrow{x}-\overrightarrow{a})*\overrightarrow{n_{o}} [/mm]

So steht bei mir im Buch: Mathematik 12.2 Cornelsen Seite 166, was auch einleuchtend ist. Aber warum, ich die Hesse-Form auch wie oben gezeigt umstellen kann, versteh ich nicht. Welches Gedankenmodel liegt da zu Grunde? > Hallo core,

>  
> [willkommenmr] !!
>  
>
> Zunächst wurde die [mm]1_[/mm] auf die linke Seite gebracht.
> Anschließend wurde die Gleichung durch die Länge desjenigen
> Normalenvektors geteilt, den man aus der Koordinatenform
> ablesen kann:
>  [mm]E \ : \ 1x+2y+3z \ = \ 1[/mm]
>  [mm]\Rightarrow \ \vec{n}_E \ = \ \vektor{1\\2\\3}[/mm]
>  
> [mm]\Rightarrow \ \left|\vec{n}_E\right| \ = \ \left|\vektor{1\\2\\3}\right| \ = \ \wurzel{1^2+2^2+3^2} \ = \ \wurzel{14}[/mm]
>  
> Gruß
>  Loddar
>  


Bezug
                        
Bezug
Hesse-Normalenform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 14.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]