matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteHesse-NF, Herleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Skalarprodukte" - Hesse-NF, Herleitung
Hesse-NF, Herleitung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hesse-NF, Herleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Do 26.11.2009
Autor: schumann

Aufgabe
Leite anschaulich die HNF her.

Hallo zusammen!

Ich habe ein Problem mit der Hessenormalform. Ich kann Sie anwenden, mehr ode rweniger, also aufstellen. Aber ich möchte gerne wissen, was ich da tue und daher die Herleitung verstehen.

Ich weiß:
- sie entspringt der Normalform durch Verwendung des normierten Einheitsvektors
- das Skalarprodukt spielt ne Rolle
- man kann damit toll abstände berechnen
- ich brauche nen Punkt in der Ebene und den Normalenvektor (durch Kreuzprodukt)

Fangen wir am besten mit der Normalform an:

Ich habe einen Pkt A in der Ebene E.
zum Punkt X in E komme ich durch das Ergenis der vektoriellen Addition
[mm] \vec{a} [/mm] + [mm] \overrightarrow{AX} [/mm] ,
denn das ergebnis ist der Ortsvektor von X.
Meine E wird durch alle Ortvektoren aller X beschrieben.

Bis hier versteheh ich die Geschichte und ich frage mich ab hier:
Wofür brauche ich den Normalenvektor,
werlcher Schrit fehlt zur Normalengleichung?

Ich glaube das ist Abistoff und sollte doch verständlich sein, wenn man mal vom Schlauch unten ist.

Danke für Hilfe.


Frage in keinem anderen Forum gestellt.

        
Bezug
Hesse-NF, Herleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Do 26.11.2009
Autor: Al-Chwarizmi


> Leite anschaulich die HNF her.
>  Hallo zusammen!
>  
> Ich habe ein Problem mit der Hessenormalform. Ich kann sie
> anwenden, mehr oder weniger, also aufstellen. Aber ich
> möchte gerne wissen, was ich da tue und daher die
> Herleitung verstehen.
>  
> Ich weiß:
>  - sie entspringt der Normalform durch Verwendung des
> normierten Einheitsvektors
>  - das Skalarprodukt spielt ne Rolle
>  - man kann damit toll abstände berechnen
>  - ich brauche nen Punkt in der Ebene und den
> Normalenvektor (durch Kreuzprodukt)
>  
> Fangen wir am besten mit der Normalform an:
>  
> Ich habe einen Pkt A in der Ebene E.
>  zum Punkt X in E komme ich durch das Ergebnis der
> vektoriellen Addition
> [mm]\vec{a}[/mm] + [mm]\overrightarrow{AX}[/mm] ,
> denn das Ergebnis ist der Ortsvektor von X.
>  Meine E wird durch alle Ortvektoren aller X beschrieben.
>  
> Bis hier versteheh ich die Geschichte und ich frage mich ab
> hier:
> Wofür brauche ich den Normalenvektor,
>  werlcher Schritt fehlt zur Normalengleichung?
>  
> Ich glaube das ist Abistoff und sollte doch verständlich
> sein, wenn man mal vom Schlauch unten ist.


Hello Mr. Schumann,

Zeichne von A aus den Vektor [mm] \overrightarrow{AX} [/mm] sowie die Ebenen-
normale n und darauf den Normalen-Einheitsvektor [mm] \vec{n} [/mm] .
F sei der Schnittpunkt von n mit der Parallelebene
zu E durch X. Dann gilt für die skalare Projektion
von [mm] \overrightarrow{AX} [/mm] auf [mm] \vec{n} [/mm] die Formel:

       $ [mm] \pm\left|\overrightarrow{AF}\right|\ [/mm] =\ [mm] \overrightarrow{AX}*\vec{n}\ [/mm] =\ [mm] \left|\overrightarrow{AX}\right|*\underbrace{|\vec{n}|}_{1}*cos(\varphi)$ [/mm]

(das Vorzeichen zeigt an, auf welcher Seite von E der
Punkt X liegt)
Der Abstand d des Punktes (jetzt ohne Vorzeichen), ist

      $\ d\ =\ [mm] \left|\overrightarrow{AF}\right|\ [/mm] =\ [mm] \left|\overrightarrow{AX}*\vec{n}\right|\ [/mm] =\ [mm] |\overrightarrow{X}*\vec{n}-\underbrace{\overrightarrow{A}*\vec{n}}_{D}|$ [/mm]

Die Ebenengleichung in HNF ist  [mm] \overrightarrow{P}*\vec{n}-D=0 [/mm] .
Setzt man hier nun links anstelle eines Punktes [mm] P\in{E} [/mm]
einen beliebigen Punkt X ein, so ergibt sich

      [mm] $\overrightarrow{X}*\vec{n}-D\ [/mm] =\ [mm] \pm [/mm] d$


LG    Al-Chw.

Bezug
                
Bezug
Hesse-NF, Herleitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 26.11.2009
Autor: schumann

Hallo Al-Chwarizmi !

Danke für die Antwort. :)

"F sei der Schnittpunkt von n mit der Parallelebene
zu E durch X."

Beim Zeichnen verstehe ich nicht:

Wenn wie in meinem Text geschildert X in E liegt:
Wie kann ich eine Parallele Ebene zu E erstellen, die auch wieder durch X geht, ohne dass es dieselbe Ebene ist?

Bezug
                        
Bezug
Hesse-NF, Herleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Do 26.11.2009
Autor: Al-Chwarizmi


> Hallo Al-Chwarizmi !
>  
> Danke für die Antwort. :)
>  
> "F sei der Schnittpunkt von n mit der Parallelebene
>  zu E durch X."
>  
> Beim Zeichnen verstehe ich nicht:
>  
> Wenn wie in meinem Text geschildert X in E liegt:
> Wie kann ich eine Parallele Ebene zu E erstellen, die auch
> wieder durch X geht, ohne dass es dieselbe Ebene ist?


Sorry, dass ich beim Lesen deiner Frage nicht genau
aufgepasst habe. Ich meine mit X einen beliebigen
Punkt im Raum, der also nicht in E liegen muss.
Ich habe nachher den Buchstaben P für einen Punkt in E
verwendet. Falls X auch in E liegt, ist natürlich die
Parallelebene gleich E und somit F=A und d=0.

Die Hesse-Form braucht man aber insbesondere für
die Abstandsberechnung, also muss man auch Punkte
ausserhalb von E betrachten. Für Punkte in E ist
die Hesse-Form nicht besonders spannend.


LG     Al-Chw.


Bezug
                                
Bezug
Hesse-NF, Herleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 26.11.2009
Autor: schumann

Danke nochmals!!

Bzgl:
$ [mm] \pm\left|\overrightarrow{AF}\right|\ [/mm] =\ [mm] \overrightarrow{AX}\cdot{}\vec{n}\ [/mm] =\ [mm] \left|\overrightarrow{AX}\right|\cdot{}\underbrace{|\vec{n}|}_{1}\cdot{}cos(\varphi) [/mm] $

Ich sehe diesen Zusammenhang leider überhaupt nicht.

Mir würde ein Abiturient gut tun, der mir erklärt, wie sie in der 11. Klasse die HNF hergeleitet haben...:)

Timmt die Skizze denn?

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                        
Bezug
Hesse-NF, Herleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Do 26.11.2009
Autor: Al-Chwarizmi

Hallo,

eine Skizze, in welcher die Ebene als Gerade erscheint
(von der Seite gesehen) ist nützlicher:

[Dateianhang nicht öffentlich]

LG   Al-Chw.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                
Bezug
Hesse-NF, Herleitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Do 26.11.2009
Autor: schumann

...das muss ichmir jetzt erst nochmals zu Gemüte führen.

Vielen Dank für Dein Engagement, Al-Chwarizmi!!

Ich melde mich dann ggf morgen nochmal, wenn ich noch Fragen habe!

Schönen Abend!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]