matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationHermitesche Polynome ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Hermitesche Polynome ableiten
Hermitesche Polynome ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermitesche Polynome ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Di 13.03.2012
Autor: volk

Hallo,
ich möchte die geschlossene Form hermiteschen Polynome ableiten und weiß nicht, wie ich da mit dem [mm] \bruch{d^{m}}{du^{m}} [/mm] umgehen muss.

Ich habe bis jetzt [mm] \bruch{d}{du}[(-1)^{m}e^{u^2}\bruch{d^{m}}{du^{m}}e^{-u^2}]=(-1)^{m}*e^{u^2}*2u*\bruch{d^{m}}{du^{m}}e^{-u^2}+(-1)^m*e^{u^2}... [/mm]

Hier weiß ich jetzt nicht weiter. Meine Idee wäre (müsste bei einer anschließenden Integration ja wieder das ursprüngliche rauskommen), dass ich etwas in der Art [mm] \bruch{d^{m+1}}{du^{m+1}} [/mm] rausbekommen müsste. Nur was mache ich mit [mm] e^{-u^2}? [/mm]

Liebe Grüße

volk

        
Bezug
Hermitesche Polynome ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Di 13.03.2012
Autor: rainerS

Hallo!

> Hallo,
>  ich möchte die geschlossene Form hermiteschen Polynome
> ableiten und weiß nicht, wie ich da mit dem
> [mm]\bruch{d^{m}}{du^{m}}[/mm] umgehen muss.
>  
> Ich habe bis jetzt
> [mm]\bruch{d}{du}[(-1)^{m}e^{u^2}\bruch{d^{m}}{du^{m}}e^{-u^2}]=(-1)^{m}*e^{u^2}*2u*\bruch{d^{m}}{du^{m}}e^{-u^2}+(-1)^m*e^{u^2}...[/mm]
>  
> Hier weiß ich jetzt nicht weiter. Meine Idee wäre
> (müsste bei einer anschließenden Integration ja wieder
> das ursprüngliche rauskommen), dass ich etwas in der Art
> [mm]\bruch{d^{m+1}}{du^{m+1}}[/mm] rausbekommen müsste. Nur was
> mache ich mit [mm]e^{-u^2}?[/mm]

Du hast nicht weitergerechnet:

[mm]\bruch{d}{du}[(-1)^{m}e^{u^2}\bruch{d^{m}}{du^{m}}e^{-u^2}]=(-1)^{m}*e^{u^2}*2u*\bruch{d^{m}}{du^{m}}e^{-u^2}+(-1)^m*e^{u^2}\bruch{d}{du}\bruch{d^{m}}{du^{m}}e^{-u^2}[/mm]

     [mm]=(-1)^{m}*e^{u^2}*2u*\bruch{d^{m}}{du^{m}}e^{-u^2}+(-1)^m*e^{u^2}\bruch{d^{m+1}}{du^{m+1}}e^{-u^2}[/mm] .

Nun ist

  [mm] \bruch{d^{m+1}}{du^{m+1}}e^{-u^2} = \bruch{d^{m}}{du^{m}} \bruch{d}{du}e^{-u^2}= -2\bruch{d^{m}}{du^{m}}(ue^{-u^2}) [/mm] .

Das kannst du weitertreiben; ist $m>1$, so ist

  [mm] \bruch{d^{m}}{du^{m}} (ue^{-u^2}) = \bruch{d^{m-1}}{du^{m-1}}\bruch{d}{du}(ue^{-u^2}) [/mm]

  [mm] = \bruch{d^{m-1}}{du^{m-1}} (e^{-u^2}-2u^2e^{-u^2}) = \bruch{d^{m-1}}{du^{m-1}}((1-2u^2)e^{-u^2}) [/mm] .

Du siehst, dass du mit jeder Ableitung eine zusätzliche Potenz von u bekommst; es entsteht also ein Polynom in u mal [mm] $e^{-u^2}$ [/mm] .

Wenn du das in die Ausgangsformel einsetzt, fallen die Exponentialfunktionen gegeneinander weg, und ein Polynom bleibt übrig.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]