matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenHermitesche Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Hermitesche Polynome
Hermitesche Polynome < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hermitesche Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Do 24.03.2011
Autor: Zukku

Aufgabe
Sei [mm] f(x)=e^{-x^2}. [/mm] Zeige: f^(n)(x)ist von der Gestalt [mm] H_{n}(x)*e^{-x^2}, [/mm] wo [mm] H_{n} [/mm] ein Polynome ist.

Zeige: [mm] H_{n+1}+2xH_{n}+2nH_{n-1}=0 [/mm]
und [mm] H''_{n}-2xH'_{n}+2nH_{n}=0. [/mm]


Wie kann ich das zeigen?

Ansätze: Ich hab mich damit beschäftigt und [mm] H_{1} [/mm] bis [mm] H_{4} [/mm] aufgestellt und herausgefunden, dass ich [mm] H_{n} [/mm] schreiben kann als [mm] H'_{n-1}-2x*H_{n-1}. [/mm]

Dann habe ich versucht, die erste Formel mit Induktion zu beweisen, komme aber nicht auf das n in der Formel.

Bitte um Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hermitesche Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Do 24.03.2011
Autor: Leopold_Gast

Zeigen wir zunächst, daß die [mm]n[/mm]-te Ableitung von der Gestalt

[mm]f^{(n)}(x) = H_n(x) \cdot \operatorname{e}^{-x^2}[/mm] mit einem Polynom [mm]H_n(x)[/mm]

ist.

Für [mm]n=0[/mm], also die Funktion [mm]f[/mm] selbst, stimmt die Aussage mit [mm]H_0(x) = 1[/mm] konstant. (Induktionsverankerung)

Nehmen wir an, die Aussage stimmt für ein gewisses [mm]n[/mm], also

[mm]f^{(n)}(x) = H_n(x) \cdot \operatorname{e}^{-x^2}[/mm] (Induktionsannahme)

so folgern wir durch nochmaliges Differenzieren

[mm]f^{(n+1)}(x) = \left( f^{(n)} \right)'(x) = H_n'(x) \cdot \operatorname{e}^{-x^2} - 2x \cdot H_n(x) \cdot \operatorname{e}^{-x^2} = \left( H_n'(x) - 2x \cdot H_n(x) \right) \cdot \operatorname{e}^{-x^2}[/mm]

Setzen wir also

[mm]H_{n+1}(x) = H_n'(x) - 2x \cdot H_n(x)[/mm]

so erkennen wir die Richtigkeit der Aussage auch für [mm]n+1[/mm] (Induktionsbehauptung), denn die Ableitung eines Polynoms ist wieder ein Polynom, und das Weitere garantieren die Ringeigenschaften der Polynome.

Du kannst in die Behauptung noch aufnehmen, daß der Leitkoeffizient von [mm]H_n(x)[/mm] den Wert [mm](-2)^n[/mm] hat, und darüber die Induktion laufen lassen. Dann weißt du noch etwas mehr, nämlich daß [mm]H_n(x)[/mm] vom Grad [mm]n[/mm] ist.

Und für die restlichen Behauptungen könnte man auch an Induktion denken.

Bezug
        
Bezug
Hermitesche Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Do 24.03.2011
Autor: Tsetsefliege

In der Angabe befindet sich ein kleiner Fehler, es müsste

[mm] H_{n+1}-2xH_{n}+2nH_{n-1}=0 [/mm] heißen, nicht

[mm] H_{n+1}+2xH_{n}+2nH_{n-1}=0 [/mm]

Bezug
                
Bezug
Hermitesche Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:13 Fr 25.03.2011
Autor: Zukku

Das stimmt, danke für die Korrektur!

Außerdem habe ich mich unklar ausgedrückt, entschuldigung. Mein Problem ist es nicht zu zeigen, dass alle [mm] H_{n} [/mm] Polynome sind, das habe ich schon geschafft.

Ich schaffe es aber nicht, mit Induktion die beiden Formeln unten, also die Rekursionsformeln zu beweisen.

Danke für eure Hilfe!

lg Zukku

Bezug
                        
Bezug
Hermitesche Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Fr 25.03.2011
Autor: Leopold_Gast

Irgendwie finde ich, daß das Pluszeichen richtig ist, nicht das Minuszeichen.

Man berechnet mit [mm]H_{n+1}(x) = H_n'(x) - 2x H_n(x)[/mm] und [mm]H_0(x) = 1[/mm] die ersten Glieder

[mm]H_0(x) = 1 \, , \ \ H_1(x) = -2x \, , \ \ H_2(x) = 4x^2 - 2[/mm]

Und hier gilt:  [mm]H_2(x) + 2x H_1(x) + 2 H_0(x) = 0[/mm]

Indem man die Gleichung mit [mm]\operatorname{e}^{-x^2}[/mm] (was ja nie 0 werden kann) durchmultipliziert, erhält man die äquivalente Formel

[mm]f''(x) + 2x f'(x) + 2 f(x) = 0[/mm]

Und jetzt zeigt man mit Induktion

[mm]\text{(\*)} \ \ f^{(n+1)}(x) + 2x f^{(n)}(x) + 2n f^{(n-1)}(x) = 0[/mm] für [mm]n \geq 1[/mm]

Der Induktionsanfang [mm]n=1[/mm] wurde gerade gemacht. Und die Induktionsbehauptung erhält man aus der Induktionsannahme schlicht durch Differenzieren der Gleichung.

Wenn man [mm]\text{(\*)}[/mm] mit [mm] \operatorname{e}^{x^2} [/mm] multipliziert, folgt

[mm]H_{n+1}(x) +2x H_n(x) + 2n H_{n-1}(x) = 0[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]