Hermitesche Polynome < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
als Teil eines Beweises wird als Übungsaufgabe gestellt, dass [mm] e^{\lambda x -\frac{1}{2}\lambda^2}=\sum_{n=0}^{\infty}\frac{\lambda^n}{n!}H_n(x) [/mm] gezeigt werden soll, wobei [mm] \lambda [/mm] eine Konstante ist und die sogenannten Hermiteschen Polynome [mm] H_n, [/mm] für alle [mm] n\in\IN [/mm] durch [mm] H_n(x):=(-1)^ne^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-\frac{1}{2}x^2} [/mm] definiert sind.
Als Anfang ist noch [mm] e^{\lambda x-\frac{1}{2}\lambda^2}=e^{\frac{1}{2}x^2}e^{-\frac{1}{2}(x-\lambda)^2} [/mm] gegeben.
Ich mache also weiter mit: [mm] \sum_{n=0}^{\infty}\frac{\lambda^n}{n!}H_n(x) [/mm] = [mm] e^{\frac{1}{2}x^2}\sum_{n=0}^{\infty}\frac{\lambda^n}{n!}(-1)^n\frac{d^n}{dx^n}e^{-\frac{1}{2}x^2}
[/mm]
und damit beibt nur noch [mm] \sum_{n=0}^{\infty}\frac{\lambda^n}{n!}(-1)^n\frac{d^n}{dx^n}e^{-\frac{1}{2}x^2} [/mm] = [mm] e^{-\frac{1}{2}(x-\lambda)^2} [/mm] zu zeigen.
Hier weiß ich nicht mehr weiter. Es gilt noch: [mm] e^{-\frac{1}{2}(x-\lambda)^2}=\sum_{n=0}^{\infty}\frac{(-1)^n(x-\lambda)^{2n}}{2^nn!}. [/mm] Vielleicht bringt mich das und/oder irgendwelche Rekursionsbeziehungen für die Ableitungen weiter? Wenn ja, dann sehe ich es jedoch nicht und wäre euch für einen Tipp dankbar.
|
|
|
|
Meine Frage hat sich mitlerweile erledigt, denn man erhält die Gleichung
[mm] e^{\lambda x -\frac{1}{2}\lambda^2}=e^{\frac{1}{2}x^2}e^{-\frac{1}{2}(x-\lambda)^2}=\sum_{n=0}^{\infty}\frac{\lambda^n}{n!}H_n(x)
[/mm]
ganz einfach durch die Taylorreihenentwicklung von [mm] e^{-\frac{1}{2}(x-\lambda)^2} [/mm] ...
|
|
|
|