matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenHerleitung einer Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Herleitung einer Ungleichung
Herleitung einer Ungleichung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 So 23.12.2007
Autor: Wimme

Aufgabe
Leiten Sie aus der Ungleichung log y [mm] \ge 1-\frac{1}{y} [/mm] die folgende Ungleichung her:
Für x<1 gilt exp(x) [mm] \ge \frac{1}{1-x} [/mm]

Hi!

Ich habe die Ungleichung einfach dadurch hergeleitet, dass ich [mm] y=e^x [/mm] gesetzt habe. Meine Frage ist nun, wo ich sehe, dass x<1 sein muss?

LG,
Wimme

        
Bezug
Herleitung einer Ungleichung: letzte Umformung
Status: (Antwort) fertig Status 
Datum: 20:19 So 23.12.2007
Autor: Loddar

Hallo Wimme!


Die Einschränkung $x \ < \ 1 \ \ \ \ [mm] \gdw [/mm] \ \ \ \ 1-x \ > \ 0$ benötigst bei der letzten Umformung der Ungleichung:
$$x \ [mm] \ge [/mm] \ [mm] 1-\bruch{1}{e^x}$$ [/mm]
[mm] $$\bruch{1}{e^x} [/mm] \ [mm] \ge [/mm] \ 1-x \ [mm] \left| \ * \ e^x$$ $$1 \ \ge \ (1-x)*e^x \ \left| \ : \ (1-x) \ \red{> \ 0}$$ Denn nun verändert sich das Ungleichheitszeichen [u]nicht[/u]: $$\bruch{1}{1-x} \ \ge \ e^x$$ Gruß Loddar [/mm]

Bezug
                
Bezug
Herleitung einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 So 23.12.2007
Autor: Wimme

aja, so ist es logisch.
ich habe das übersehen, weil ich immer dachte, dass sich das Ungleichheitszeichen umdreht, wenn man den Kehrwert nimmt:

[mm] \frac{1}{e^x} \ge [/mm] 1-x [mm] \Leftrightarrow e^x \le \frac{1}{1-x} [/mm]

aber offensichtlich ist dem nicht immer so :D

Bezug
                        
Bezug
Herleitung einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 So 23.12.2007
Autor: schachuzipus

Hallo Wimme,

beim Übergang zum Kehrbruch dreht sich das Ungleichheitszeichen schon um, dein Rechenschritt und Loddars Rechnung liefern doch dieselbe Ungleichung

Es hat sich aber wohl ein Fehler in der Aufgabenstellung eingeschlichen.

Dort müsste es heißen: "Zeige aus der Ungleichung blabla, dass für $x<1$ gilt:

[mm] $\exp(x) [/mm] \ [mm] \red{\le} [/mm] \ [mm] \frac{1}{1-x}$ [/mm]  und nicht [mm] "$\ge$" [/mm]

Dann stimmt es mit Loddars Rechnung bzw. mit dem direkten Übergang zum Kehrbruch überein


Gruß und frohes Fest

schachuzipus

Bezug
                                
Bezug
Herleitung einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 So 23.12.2007
Autor: Wimme

ja, du hast recht mit der Aufgabenstellung.

Ich weiß, dass beide Wege die korrekte Ungleichung bringen, aber bei dem mit dem direkten Umkehrbruch sehe ich nicht, dass x<1 sein muss.

Danke, Dir auch ein frohes Fest!

Bezug
                                        
Bezug
Herleitung einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 So 23.12.2007
Autor: schachuzipus

Hallo Wimme,

also beide Wege führen nach Rom.

Beim direkten Übergang zum Kehrbruch kann man vllt. einsehen, dass $x<1$ sein muss, wenn man sich mal die gegenteilige Beh. anschaut.

Was wäre, wenn $x>1$ wäre?

Dann wäre $1-x<0$, also [mm] $\frac{1}{1-x}<0$ [/mm]

Dann stünde also dort [mm] $e^x [/mm] \ [mm] \le [/mm] \ [mm] \frac{1}{1-x} [/mm] \ < \ 0$

Aber [mm] $e^x$ [/mm] ist immer positiv, also nie kleiner als etwas Negatives, also ist die Annahme $x>1$ falsch, also muss $x<1$ sein


Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]