matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikHerleitung der Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Herleitung der Formel
Herleitung der Formel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung der Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 17.05.2009
Autor: sunny9

Hallo,

ich habe eine Aufgabe, an der ich die ganze Zeit schon scheitere. Ich stell sie hier einfach mal und vielleicht kann mir ja jemand helfen.

Also: Zuerst soll man zeigen, dass folgende Gleichungen gelten:

(1)V(X)= [mm] \summe_{k=0}^{n} (k-u)^2 [/mm] *P(X=k) = [mm] (\summe_{k=1}^{n} k^2*P(X=k))-u^2 [/mm]

[mm] (2)k^2* [/mm] {n [mm] \choose [/mm] k}= (k*(k-1)+k)* {n [mm] \choose [/mm] k} = n*(n-1)* {n-2 [mm] \choose [/mm] k-2}+ n* {n-1 [mm] \choose [/mm] k-1}

[mm] (3)\summe_{k=1}^{n}k^2*P(X=k)=n*(n-1)*p^2*(p+q)^{n-2}+np*(p+q)^{n-1} [/mm]

Folgere dann aus (1) und (3): V(X)=n*p*(1-p)

So, also ich habe mehrere Ansätze, aber ich kriegs einfach nicht richtig hin.Ich habe überlegt, dass man P(X=k) auch durch:  {n [mm] \choose k}*p^k*q^{n-k} [/mm] ausdrücken kann. Weiterhin könnte man {n [mm] \choose [/mm] k} auch mit Fakultäten schreiben, also: [mm] \bruch{n!}{k!(n-k)!}. [/mm]

Vielen Dank schon mal und herzliche Grüße

        
Bezug
Herleitung der Formel: Wikipedia
Status: (Antwort) fertig Status 
Datum: 19:02 So 17.05.2009
Autor: informix

Hallo sunny9,

> Hallo,
>
> ich habe eine Aufgabe, an der ich die ganze Zeit schon
> scheitere. Ich stell sie hier einfach mal und vielleicht
> kann mir ja jemand helfen.
>  
> Also: Zuerst soll man zeigen, dass folgende Gleichungen
> gelten:
>  
> (1)V(X)= [mm]\summe_{k=0}^{n} (k-u)^2[/mm] *P(X=k) =
> [mm](\summe_{k=1}^{n} k^2*P(X=k))-u^2[/mm]

[guckstduhier] []Varianz

>  
> [mm](2)k^2* {n \choose k}= (k*(k-1)+k)* {n \choose k} = n*(n-1)* {n-2 \choose k-2}+ n* {n-1 \choose k-1}[/mm]

Schreibe die Binomialkoeffizienten mal als Brüche auf!

>  
> [mm](3)\summe_{k=1}^{n}k^2*P(X=k)=n*(n-1)*p^2*(p+q)^{n-2}+np*(p+q)^{n-1}[/mm]
>  
> Folgere dann aus (1) und (3): V(X)=n*p*(1-p)
>  
> So, also ich habe mehrere Ansätze, aber ich kriegs einfach
> nicht richtig hin.Ich habe überlegt, dass man P(X=k) auch
> durch:  [mm]{n \choose k}*p^k*q^{n-k}[/mm] ausdrücken kann.
> Weiterhin könnte man {n [mm] \choose [/mm] k} auch mit Fakultäten
> schreiben, also: [mm]\bruch{n!}{k!(n-k)!}.[/mm]
>  
> Vielen Dank schon mal und herzliche Grüße


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]