matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenHerleitung der Beschleunigung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Herleitung der Beschleunigung
Herleitung der Beschleunigung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung der Beschleunigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 25.06.2007
Autor: Canard_Sauvage

Okay, ich steh heute total auf dem Schlauch. Ich will einfach mal die Formel für die Beschleunigung herleiten, die ist ja [mm] s(t)=\bruch{1}{2}\*a\*t²+v_{0}\*t+s_{0} [/mm]

s´(t)=v(t) also [mm] \bruch{ds}{dt}=v [/mm]
v´(t)=a(t) also [mm] \bruch{dv}{dt}=a [/mm]

Ist ja klar, dann ergibt sich (ganz allgemein mit bereits eingesetzten Integrationskonstanten für das Integrieren) für [mm] s=v\*t+s_{0} [/mm]

Und nun noch einmal integrieren [mm] v=\bruch{s-s_{0}}{t}=\integral_{unbestimmt}^{unbestimmt}{a\*dt} [/mm]

Daraus ergibt sich [mm] (s-s_{0})/t [/mm] = [mm] a\*t+v_{0} [/mm] und das umgestellt nach s ergibt [mm] s=a\*t²+v_{0}\*t+s_{0} [/mm]

Wo ist das 1/2? Bzw. wo ist mein Denkfehler?

        
Bezug
Herleitung der Beschleunigung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mo 25.06.2007
Autor: Kroni

Hi,

mach das doch sorum:

$a=const.$

[mm] $v(t)=\int{a(t) dt}=a*t+c_0$ [/mm] mit [mm] $c_0=v_0$ [/mm]

[mm] $s(t)=\int{v(t) dt}=\int{a*t+v_0 dt}=0.5at^2+v_0*t+c_1$ [/mm] mit [mm] c_1=s_0 [/mm] ergibt sich dann deine gesuchte Bewegungsgleichung.

In deiner Lösung hast du mal stehen [mm] $v=\Delta [/mm] s / [mm] \Delta [/mm] t$, das gilt dann aber nur für die mittlere Geschwindigkeit bzw für gleichförmige Bewegunen, wo v konstant ist.
Da hier v nicht konstant ist, kannst du das so nicht rechnen, du muss v als [mm] \int{a(t) dt}ansehen! [/mm]

LG

Kroni

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]