Herleitung: Schnittwinkel zwischen zwei Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:02 Mi 18.02.2004 | Autor: | Arthur |
hallo!
eine freundin von mir hat ein referat über das oben genannte thema gehalten und das ganze über den kosinussatz hergeleitet
dabei hat sie |u-v|² mit der binomischen formel aufgelöst und das mit dem kosinussatz gleichgesetzt ( |u-v|² = |u|² + |v²| - 2|u|*|v|*cos alpha
da kam dann am ende die richtige formel für den schnittwinkel raus
jetzt hat allerdings der lehrer gesagt dass es total falsch ist
wo liegt bei dem gedankengang denn der fehler? ich hab ihn auf anhieb leider nicht gefunden!
kann es sein dass die umformung der binomischen formel falsch ist?
sie hat geschrieben |u|² - 2|u*v| + |v|² aber es müsste doch eher |u|*|v| sein oder?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:41 Mi 18.02.2004 | Autor: | Stefan |
Hallo Arthur,
erst einmal sorry, sorry, sorry, dass ich mich noch nicht wegen deines Referates zu den komplexen Zahlen geäußert habe. Ich habe es angefangen zu lesen, konnte es bisher aber aus zeitlichen Gründen noch nicht beenden. Ist das noch aktuell oder hast du es schon gehalten? Wenn es noch aktuell ist, dann schaue ich es mir über Karneval an und melde mich nochmal.
Die Beweisidee deiner Freundin ist richtig. Man kann das über den Kosinussatz herleiten.
Jetzt habe ich es auch verstanden, was du meinst. Doch, das geht so, klar!
Einerseits ist
[mm]|u-v|^2 = |u|^2 + |v|^2 - 2u\*v[/mm],
wobei ich mit [mm]u\*v[/mm] das Skalarprodukt bezeichne,
andererseits ist
[mm]|u-v|^2 = |u|^2 + |v|^2 - 2\cdot |u|\cdot |v| \cdot \cos(\alpha)[/mm].
Gleichsetzen liefert die Behauptung.
Ich weiß jetzt auch nicht, wo da das Problem des Lehrers liegt.
Viele Grüße
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:50 Mi 18.02.2004 | Autor: | Arthur |
also die idee dahinter kenne ich nicht
das hatte ihr ein mathestudent so gesagt ;)
sie hatte geschrieben im dreieck 0VU gilt der kosinussatz
|u-v|² = |u|² + |v|² - 2 |u|*|v| * cos alpha
und dann hatte sie gesagt
bin formel : |u-v|² = |u|² - 2|u*v| + |v|²
und dann gleichgesetzt kam raus
cos alpha = |u*v|/|u| * |v|
deswegen war meine ahnung dass die bin formel nicht - 2|uv| sondern -2|u||v| ist
dann sollte man den mathestudent der ihr das so aufgeschrieben allerdings lynchen :)
und wie komm ich denn direkt vom kosinussatz auf die formel?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:53 Mi 18.02.2004 | Autor: | Stefan |
Hallo Arthur,
ich hatte meine alte Antwort gerade verbessert (ich war beim ersten Mal zu schnell ).
Ist es jetzt klar?
Lies sie dir bitte noch einmal durch und melde dich dann noch einmal.
Viele Grüße
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:00 Mi 18.02.2004 | Autor: | Stefan |
Hallo Arthur!
Das Problem liegt darin, dass man genau klären muss, was [mm]\alpha[/mm] ist. In der Gradformel
[mm]\cos(\alpha) = \frac{|u\*v|}{|u|\cdot |v|}[/mm]
wird nur [mm] $\alpha$ [/mm] mit [mm]0 \le \alpha \le \frac{\pi}{2}[/mm]
betrachtet, d.h. man betrachtet immer den "kleinsten" Winkel zwischen den Vektoren. Für solche Winkel klappt die Herleitung also.
Für [mm] $\alpha$ [/mm] mit [mm]\frac{\pi}{2} < \alpha \le \pi[/mm] stimmt die Herleitung immer noch, aber dafür gilt eben dann die Formel [mm]\cos(\alpha) = \frac{|u\*v|}{|u|\cdot |v|}[/mm] nicht mehr, sondern
[mm]\cos(\alpha) = \frac{u\*v}{|u|\cdot |v|}[/mm]
oder
[mm]\cos(\alpha) = -\frac{|u\*v|}{|u|\cdot |v|}[/mm]
Klar?
Viele Grüße
Stefan
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:06 Mi 18.02.2004 | Autor: | Arthur |
ja ist klar
wobei das sicher nicht das problem des lehrers war
denn in unserem mathebuch und unserem lehrplan kommt nur die formel für 0<=a<=pi/2 vor
ich habe jetzt gleich schule( 4 stunden ausgefallen) und werde nochmal nachhaken was er denn genau beanstandet hat
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:55 Mi 18.02.2004 | Autor: | Arthur |
hmmm...dann stimmt es also doch
merkwürdiger lehrer!
zu meinem referat
ich habe es bereits gehalten....die version die du hast ist allerdings nicht die im moment aktuelle...da waren noch einige fehler drin
ich kann dir mal die aktuelle schicken
ich habe für den vortrag 14 und für den inhalt 15 bekommen
jetzt fehlt noch die note für die schriftliche ausarbeitung die ich eben noch nicht abgegeben habe....also ist es noch aktuell :)
rasmus meinte ich sollte mich in tex einarbeiten weil das ganze dann schöner aussieht. falls ich nämlich 15 punkte für die ausarbeitung bekomme ist die gesamtnote auch 15 :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:38 Mi 18.02.2004 | Autor: | Stefan |
Hallo Arthur,
okay, erst einmal herzlichen Gückwunsch zu deinen tollen Noten. Jetzt müssen es aber auch die 15 Punkte sein, klar.
Schick mir die aktuelle Version noch einmal, ich habe ja noch etwas gutzumachen. Latex ist eine gute Idee. Hast du eine Version? Welche?
Ich kann es dir ja dann schön formatieren, ich kenne die Tricks. Schließlich arbeite ich seit 10 Jahren mit Latex.
Viele Grüße
Stefan
|
|
|
|