matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikHerleitung Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Herleitung Formel
Herleitung Formel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Do 23.04.2009
Autor: noobo2

Hallo,
es geht um ein mathematisches Pendel. Um dort die Formel herzuleiten geht man davon asu, dass der Weg den der Pendelkörper auf der Kreisbahn zurücklegt gegeben ist durch
s= [mm] l*\phi [/mm]  
mit Pendellänge l und Auslenkungswinkel [mm] \phi [/mm]  kann mir jemadn bitte nen hinweis geben, wie man auf diese Formel kommt?

        
Bezug
Herleitung Formel: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Do 23.04.2009
Autor: Loddar

Hallo noobo!


Warum stellst Du hier dieselbe Frage nochmal?


Gruß
Loddar


Bezug
        
Bezug
Herleitung Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Do 23.04.2009
Autor: Fulla

Hallo noobo,

mit der Formel berechnet man die Länge des Kreisbogens (mit Radius $ l $ und Winkel [mm] $\phi$). [/mm]

Der Winkel [mm] $\phi$ [/mm] im Bogenmaß ist gegeben durch: [mm] $\phi=\frac{s}{l}$, [/mm] wobei $s$ die Länge des Kreisbogens ist.

Umgestellt nach $s$ ergibt sich: $s=l [mm] \phi$ [/mm] (wobei der Winkel [mm] $\phi$ [/mm] im Bogenmaß ist).

Alles klar?
Lieben Gruß,
Fulla



Bezug
                
Bezug
Herleitung Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Do 23.04.2009
Autor: noobo2

Hi,
danke dass hatte ich komplett vergessen, hab gedacht es handelt sich um irgendeinen drehimpuls. Noch eine Frag eund zwar wenn man die Differenzielagleichung
[mm] -\bruch{g}{l}*phi= \bruch{d^2\phi}{dt^2} [/mm] löst kommt man je nach dem wo das pendel losgelassen wird auf die Lösung
[mm] \phi [/mm] = [mm] \phi_{0}*sin [/mm] (w*t+k)     (w ist hier omga)
wie kann man daraus denn erkenne, wie hier behauptet auf S.2
http://www.htw-aalen.de/pz/bilder/Versuchsbeschreibung/05PZ_S1_Mathematisches_&_Physikalisches-Pendel.pdf
dass sich der zusammenhang
[mm] w=\wurzel{\bruch{g}{l}} [/mm] ergibt?

Bezug
                        
Bezug
Herleitung Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Do 23.04.2009
Autor: Event_Horizon

Hallo!

Du machst doch den Ansatz [mm] $\phi(t)=\phi_0*\sin(\omega [/mm] *t +k)$ Dies ist eine Funktion, die deine DGL lösen soll. Wie lautet denn [mm] \frac{d^2\phi(t)}{dt^2} [/mm] ? Setze das und [mm] \phi(t) [/mm] in deine DGL ein, und du wirst als erstes sehen, daß du durch [mm] \phi_0 [/mm] "teilen" kannst. Das bedeutet, daß [mm] \phi_0 [/mm] eine unabhängige Konstante ist, die irgendeinen beliebigen Wert annehmen kann. Das ist ja die max. Auslenkung, und die kannst du beim Experiment ja vorgeben. Auch das k ist völlig egal.

Damit die restliche Gleichung erfüllt ist, muß eine bestimmte Beziehung zwischen [mm] \omega, [/mm] g und l gelten, und das ist eben [mm] \omega=\sqrt{\frac{g}{l}} [/mm] . Das bedeutet, daß die "Geschwindigkeit", mit der dein System schwingt, alleine von g und l, also von dem Pendel selbst abhängt.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]