matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisHerleitung Flächträgheitsmoment
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Herleitung Flächträgheitsmoment
Herleitung Flächträgheitsmoment < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Flächträgheitsmoment: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 22.06.2004
Autor: drew

hallo

ich suche die herleitung der formel zur berechnung des axialen flächenmoments 2. grades einer funktion bezüglich der x-achse.



[mm] I_{x}= [/mm] 1 /3 * [mm] \int_a^b f(x)^3\, [/mm] dx


die formel habe ich aus "Lothar Papula: Mathematische Formelsammlung
(6. Ausgabe, s.166)"


wär super wenn mir jemand sagen könnte, wie man diese formel herleiten kann..danke!!


ich habe die frage bereits in folgendem forum:

[]http://www.uni-protokolle.de/foren/viewt/3528,0.html?sid=713e2aaf78d7f24712f82b3b450a24c4



        
Bezug
Herleitung Flächträgheitsmoment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Di 22.06.2004
Autor: Julius

Hallo!

> ich habe die frage bereits in folgendem forum:

> []http://www.uni-protokolle.de/foren/viewt/3528,0.html?sid=713e2aaf78d7f24712f82b3b450a24c4

Vielen Dank für den Hinweis. Wenn du dort in dem Forum jetzt auch noch schreibst, dass du die Frage auch hier gestellt hast (bitte die genaue URL angeben!), dann fangen wir an über deine Aufgabe nachzudenken.

Liebe Grüße
Julius



Bezug
                
Bezug
Herleitung Flächträgheitsmoment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Di 22.06.2004
Autor: drew

Ist erledigt!

Bezug
        
Bezug
Herleitung Flächträgheitsmoment: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 22.06.2004
Autor: Paulus

Hallo drew

ich habe dazu mal eine kleine Skizze gemacht:

ein x-y-Koordinatensystem, dazu den Graphen einer Funktion > 0 und die Fläche unter der Kurve eingezeichnet, innerhalb der x-Grenzen $a$ und $b$ (wie man das im Zusammenhang mit der Integralrechnung wohl schon zigmal gemacht hat). Wenn man nun annimmt, dass auf der Fläche eine Masse verteilt ist mit spezifischem Gewicht $1$, dann liegt in einem Quadrätchen mit den Seiten $dx$ und $dy$ gerade die Masse $dx*dy$. Für die Massenträgheit eines Massenpunktes (Masse $m$) bezüglich einer Achse $a$ mit dem Abstand $r$ von dieser Achse gilt (Physik): [mm] $I_{a} [/mm] = [mm] m*r^2$. [/mm]
Uebertragen auf unser Problem also:

[mm] $I_x=dx*dy*y^{2}=y^{2}*dy*dx$ [/mm]

Diese infinitesimalen Elemente brauchst du jetzt nur noch über der ganzen Fläche zusammenzuzählen, sprich: zu integrieren: (dabei siehst du an der Skizze, dass $y$ von $0$ bis $f(x)$ läuft, während $x$ von $a$ bis $b$ läuft. Somit:

[mm] $I_x=\int_{a}^{b}\int_{0}^{f(x)}y^{2}\,dy\,dx=\int_{a}^{b}(\int_{0}^{f(x)}{y^{2}}\,dy)\,dx=\int_{a}^{b}\bruch{f(x)^{3}}{3}\,dx=\bruch{1}{3}\int_{a}^{b}f(x)^{3}\,dx$ [/mm] :-)

Mit lieben Grüssen

Bezug
                
Bezug
Herleitung Flächträgheitsmoment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 Di 22.06.2004
Autor: Paulus

Hallo drew

vielleicht wäre es sinnvoll, auf dem anderen Forum darauf hinzuweisen, dass die Aufgabe im Matheraum schon gelöst worden ist, respektive, dass deine Frage intensiv studiert wird. ;-)

Sonst denken sich andere das Gehirn aus dem Kopf, obwohl das gar nicht mehr nötig ist!

Mit lieben Grüssen



Bezug
                
Bezug
Herleitung Flächträgheitsmoment: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Di 22.06.2004
Autor: drew

Super! Danke vielmals! wünsche noch einen schönen abend..



ps: die im anderen forum wissen bescheid!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]