matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikHerleiten von Verteilungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Herleiten von Verteilungen
Herleiten von Verteilungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleiten von Verteilungen: Normal plus Poisson
Status: (Frage) beantwortet Status 
Datum: 18:34 Mi 08.04.2009
Autor: wiggle

Aufgabe
Wie sieht die Verteilungsfunktion einer Zufallsvariablen (ZV) aus, die die Summe einer normalverteilten ZV und einer Poisson verteilten ZV ist?

Hallo!

brauche das hier zur Herleitung eines Modells, was ich mir gerade bastel...

Das Problem ist glaube ich, dass die Normalverteilung eine Dichtefunktion und die Poisson Verteilung eine diskrete Wskts Funktion hat...

Danke für alle Bemühungen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleiten von Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Do 09.04.2009
Autor: koepper

Hallo,

> Wie sieht die Verteilungsfunktion einer Zufallsvariablen
> (ZV) aus, die die Summe einer normalverteilten ZV und einer
> Poisson verteilten ZV ist?

> Das Problem ist glaube ich, dass die Normalverteilung eine
> Dichtefunktion und die Poisson Verteilung eine diskrete
> Wskts Funktion hat...

Da sehe ich gerade nur eine Möglichkeit: Stelle die unendliche Summe auf für

X poissonvert.
Y normalvert.

$F[X+Y](x) = [mm] \sum_{k=0}^\infty [/mm] P(X=k) * F[Y](x-k)$

Zur Approximation kann man die unendliche Summe für hinreichend großes k abschneiden, da die poisson-vert. ZV dann zu vernachlässigende Wsk. liefert.
Das ganze würde ich dann mit einem CAS plotten.

LG
Will

Bezug
                
Bezug
Herleiten von Verteilungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 Do 09.04.2009
Autor: wiggle

Aufgabe
Herleitung Dichte

Nochmal eine Frage hierzu:

Wie sieht die Dichte dieser Verteilungsfunktion aus?

Und wie würde eine Dichte aussehen, wenn man eine Normal verteilte ZV plus eine Poisson Verteilte ZV, die wiederum mit einer normalverteilten ZV multipliziert wird, hat?

Gibts dazu irgendwelche Internetseiten, Anleitungen, Kochrezepte,...?

Ich habe nur die Formel für die Faltung gefunden, aber die ist laut der Internetseite nur für stetige ZV's!

Hier der link:
http://www.mathematik.uni-ulm.de/stochastik/lehre/ws03_04/wr/skript/node38.html


Vielen Dank für jegliche Hilfe!



Bezug
                        
Bezug
Herleiten von Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Do 09.04.2009
Autor: Blech


> Herleitung Dichte
>  Nochmal eine Frage hierzu:
>  
> Wie sieht die Dichte dieser Verteilungsfunktion aus?

[mm] $f(y)=\sum_{k=0}^\infty f_Y(y-k)P(X=k)$ [/mm]

Ich glaube nicht, daß da was hübsches rauskommt.

Der entscheidende Summenterm wird
[mm] $\sum_{k=0}^\infty e^{-k^2}\lambda^k/k!$ [/mm]

Wenn das ein nettes Ergebnis hat, dann wüßte ich es nicht.

> Und wie würde eine Dichte aussehen, wenn man eine Normal
> verteilte ZV plus eine Poisson Verteilte ZV, die wiederum
> mit einer normalverteilten ZV multipliziert wird, hat?

Häßlich. =)

  

> Gibts dazu irgendwelche Internetseiten, Anleitungen,
> Kochrezepte,...?

Stell wie in der ersten Antwort die Verteilungsfunktion auf und schau dann, ob man ableiten kann.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]