matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieHausdorff-Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Hausdorff-Integral
Hausdorff-Integral < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hausdorff-Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:45 Mi 28.03.2012
Autor: sigmar

Aufgabe
Berechnen Sie mit einer Methode ihrer Wahl das folgende Integral:

[mm] \int_A x_2 d\mathcal{H}^2(x) [/mm] für Die Sphäre A := {x [mm] \in\IR^3 [/mm] : [mm] x_1^2 [/mm] + [mm] (x_2 [/mm] - [mm] 2)^2 [/mm] + [mm] (x_3 [/mm] - [mm] 4)^2 [/mm] = 1}

Tatsächlich habe ich zwar eine Musterlösung für die Aufgabe, allerdings verstehe ich den ersten Schritt nicht (danach ist mir alles klar):

[mm] \int_A x_2 d\mathcal{H}^2(x) [/mm] = [mm] \int_{S^2} (x_2 [/mm] + 2) [mm] d\mathcal{H}^2(x) [/mm]

Kann mir jemand erklären was hier passiert?

        
Bezug
Hausdorff-Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Mi 28.03.2012
Autor: Marcel

Hallo,

> Berechnen Sie mit einer Methode ihrer Wahl das folgende
> Integral:
>  
> [mm]\int_A x_2 d\mathcal{H}^2(x)[/mm] für Die Sphäre $A := [mm] \{x \in\IR^3 :x_1^2 + (x_2 - 2)^2 + (x_3 - 4)^2 = 1\}$ [/mm]
>  Tatsächlich habe ich zwar eine Musterlösung für die
> Aufgabe, allerdings verstehe ich den ersten Schritt nicht
> (danach ist mir alles klar):
>  
> [mm]\int_A x_2 d\mathcal{H}^2(x)[/mm] = [mm]\int_{S^2} (x_2[/mm] + 2)
> [mm]d\mathcal{H}^2(x)[/mm]
>  
> Kann mir jemand erklären was hier passiert?

ich kenne mich mit Hausdorff-Integralen nicht aus, aber das sieht doch stark nach einer Substitution aus. Schließlich geht "die verschobene Einheitssphäre [mm] $A\,$ [/mm] (mit Mittelpunkt [mm] $(0,2,4)\,$)" [/mm] ja in [mm] $S^2$ [/mm] (die Einheitssphäre mit Mittelpunkt [mm] $(0,0,0)\,$) [/mm] über.

Ansonsten werden halt bei [mm] $x_2=0*x_1+1*x_2+0*x_3$ [/mm] dann die substituierten Variablen wohl verwendet?!

Sicher bin ich mir dabei allerdings nicht - dazu müsste ich erstmal die Definition des Hausdorffs-Integrals kennen!

Gruß,
Marcel

Bezug
                
Bezug
Hausdorff-Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Fr 30.03.2012
Autor: sigmar

Habs jetzt raus und es geht so ähnlich. Wir transformieren von unserer verschobenen Sphäre in die Einheitssphäre und dabei wird aus [mm] x_2 [/mm] nunmal [mm] x_2 [/mm] + 2. Ausserdem multiplizieren wir das ganze noch mit der Funktionaldeterminante, die hier allerdings (wie bei allen Sphären die nur verschoben sind) praktischerweise 1 beträgt und daher unpraktischerweise in der Musterlösung nicht mit notiert wurde. ;)
Evtl hilft es ja jemandem der in Zukunft nach Hausdorff-Integralen sucht, im Internet findet man leider nicht so viel darüber.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]