matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisHausaufgabe unklar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Hausaufgabe unklar
Hausaufgabe unklar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hausaufgabe unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Do 16.09.2004
Autor: Meli

Ich habe diese Frage in keinem weiterem Forum gestellt.

Könntet ihr mir bitte bei den 2 folgenden Aufgaben helfen


1)  Zeichne die Schaubilder von f = g + h  mittels Ordinatenaddition:
     g(x) = (mm) [mm] \wurzel(x) [/mm] (/mm)   ;
     h(x) = -1/2x + 4 im Bereich x (mm) [mm] \le [/mm] (/mm)
                                                            

2)   Eine Parabel 4-ter Ordnung hat in W(2/1) einen Terassenpunkt und in H(4/4) einen Hochpunkt.  Bestimme die Funktionsgleichung dieser Parabel.


        
Bezug
Hausaufgabe unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Do 16.09.2004
Autor: andreas

hi Melanie

zu aufgabe 1 kann ich dir wohl auch nicht mehr sagen, als dein buch oder lehrer: zeichen einfach mal die funktion $g$ und $h$ in dem angegeben bereich und addiere an festen punkten auf der $x$-achse die ordinaten von $g$ und $h$. durch diese punkte die du dabie erhälst muss dan der graph von $f = g + h$ gehen.

wenn du das machst, sollte es dann - für $x$ zwischen $0$ und $10$ - in etwa so aussehen (dabei ist $g$ rot, $h$ grün und $f=g+h$ gelb):

[Dateianhang nicht öffentlich]


zur aufgabe 2:

eine allgemeine funktion 4ten grades hat ja die form [m] f(x) = ax^4 + bx^3 + cx^2 + dx + e[/m]. nun musst du nur noch diese allgemeine funktion ableiten:
[m] f(x) = ax^4 + bx^3 + cx^2 + dx + e[/m]
[m] f'(x) = 4ax^3 + 3bx^2 + 2cx + d [/m]
[m]f''(x) = ... [/m]

und die gegeben bedingungen einsetzen: aus [m] W(2 | 1) [/m] terassenpunkt folgt - da der funktionswert gegeben ist und die erste, sowie zweite ableitung an terassenpunkten genügend oft differenzierbarer funktionen null sein muss:
[m] f(2) = 16a + 8b + 4c + 2d + e \stackrel{!}{=} 1[/m]
[m] f'(2) = 32 a + 12 b + 4 c + d \stackrel{!}{=} 0 [/m]
[m] f''(2) \stackrel{!}{=} 0 [/m].


aus der bedingung [m] H(4|4)[/m] hochpunkt folgt - da der funktionswert gegeben ist und bei hochpunkten die erste ableitung null sein muss:
[m] f(4) \stackrel{!}{=} 4 [/m]
[m] f'(4) \stackrel{!}{=} 0 [/m].


insgesamt sind das also $5$ gleichungen - von denen ich die ersten beiden schon explizit angegeben habe - für $5$ unbekannte $a,b,c,d,e$. du musst also nur noch ein lineares gleichungssystem lösen, was natürlich ein bisschen rechenarbeit, aber nicht übermäßig schwer ist. probiere das doch mal. du kannst die ergebnisse ja dann mal zur kontrolle hier angeben oder - wenn du nicht weiterkommst - noch weitere fragen stellen.

grüße
andreas


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]