matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteHauptvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Hauptvektoren
Hauptvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptvektoren: Beweis für lineare Unabh.
Status: (Frage) überfällig Status 
Datum: 16:09 Di 15.05.2012
Autor: Peter_Pan2

Aufgabe
Beweise:
Hauptvektoren zu paarweise verschiedenen Eigenwerten [mm] \lambda_{1} [/mm] , ..., [mm] \lambda_{m} [/mm] eines Endomorphismus F: V [mm] \to [/mm] V sind linear unabhängig.

Ich habe diese Frage in keinem anderen Forum und auf keiner anderen Website gepostet.

Hallo!

Ich versuche mir gerade den Satz über die Hauptraumzerlegung zu erarbeiten und bin dabei auf die Frage gestoßen, ob Hauptvektoren zu verschiedenen Eigenwerten linear unabhängig sind. Habe dazu auch einen Beweis gefunden und möchte mal wissen ob ich ihn richtig verstanden habe.

Seien also [mm] \lambda_{1} [/mm] , ..., [mm] \lambda_{m} [/mm] die paarweise verschiedenen Eigenwerte von F und [mm] x_{1} [/mm] , ... , [mm] x_{m} [/mm] (alle [mm] \not= [/mm] 0 ) zugehörige Hauptvektoren aus den entsprechenden Haupträumen
Ker (F - [mm] \lambda_{i}id_{V})^{s_{i}}. [/mm] Es ist Ker (F - [mm] \lambda_{i}id_{V})^{s_{i}}= [/mm] Ker (F - [mm] \lambda_{i}id_{V})^{s_{i}+n} [/mm] für alle natürlichen Zahlen.

Angenommen [mm] x_{1} [/mm] , ... , [mm] x_{m} [/mm] seien linear abhängig, dann wäre [mm] x_{m} [/mm] = [mm] \summe_{i=1}^{m-1} a_{i} [/mm] [mm] x_{i} [/mm] mit mindestens einem Skalar [mm] a_{i}\not=0. [/mm] Es würde folgen
(F - [mm] \lambda_{m}id_{V})^{s_{m}}( [/mm] [mm] x_{m} [/mm] ) [mm] =\summe_{i=1}^{m-1} a_{i}(F [/mm] - [mm] \lambda_{m}id_{V})^{s_{m}}( [/mm] [mm] x_{i} [/mm] ) = 0 und für
[mm] y_{i} [/mm] := (F - [mm] \lambda_{m}id_{V})^{s_{m}}( [/mm] [mm] x_{i} [/mm] ) (i = 1, ..., m-1) würde gelten:

a) [mm] y_{i} [/mm] ist wieder Hauptvektor zu [mm] \lambda_{i}, [/mm] da [mm] x_{i} [/mm] invariant unter F ist und damit auch unter
(F - [mm] \lambda_{m}id_{V})^{s_{m}}. [/mm]

b) [mm] y_{i} [/mm] [mm] \not= [/mm] 0 , denn [mm] y_{i} [/mm] = 0 hätte zur Folge, dass [mm] x_{i} [/mm] sowohl im Hauptraum zu [mm] \lambda_{i} [/mm] liegen würde (nach Voraussetzung) als auch im Hauptraum zu [mm] \lambda_{m}. [/mm] Damit läge
[mm] x_{i} [/mm] im Durchschnitt beider Haupträume und wäre demnach der Nullvektor, was von vornherein ausgeschlossen war.

[mm] y_{1} [/mm] , ..., [mm] y_{m-1} [/mm] sind also Hauptvektoren zu den Eigenwerten [mm] \lambda_{1} [/mm] , ..., [mm] \lambda_{m-1} [/mm] und wegen    
[mm] \summe_{i=1}^{m-1} a_{i} [/mm] [mm] y_{i} [/mm] = 0 linear abhängig, da ja mindestens ein [mm] a_{i}\not=0 [/mm] war. Also hat man nun m-1 linear abhängige Hauptvektoren zu m-1 paarweise verschiedenen Eigenwerten. Verfährt man so weiter, stößt man nach höchstens m-2 Schritten auf eine Gleichung mit zwei linear abhängigen Hauptvektoren [mm] z_{1} [/mm] und [mm] z_{2} [/mm] zu den Eigenwerten [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] mit 0 = [mm] \gamma_{1} [/mm] [mm] z_{1} [/mm] + [mm] \gamma_{2} [/mm] [mm] z_{2} [/mm] , wo mindestens einer der beiden Skalare [mm] \gamma_{1} [/mm] und [mm] \gamma_{2} [/mm] von 0 verschieden ist. Das führt dann letztlich zum Widerspruch, da im Fall, dass beide Skalare ungleich 0 sind, die beiden Hauptvektoren Vielfache voneinander sind und somit im gleichen Hauptraum liegen. Das geht nicht, da der Durchschnitt zweier Haupträume nur den Nullvektor enthält (das setze ich als bewiesen voraus). Im Fall, dass nur einer der beiden Skalare (z. B. [mm] \gamma_{1}) [/mm] von 0 verschieden ist, steht dort 0 = [mm] \gamma_{1} [/mm] [mm] z_{1} [/mm] , was wegen   [mm] z_{1} [/mm] [mm] \not= [/mm] 0 unmöglich ist.

Stimmt das so? wäre froh wenn jemand sich das mal anschauen könnte =)

VG,

Christof  

        
Bezug
Hauptvektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 So 20.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]