matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Hauptnenner
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Hauptnenner
Hauptnenner < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptnenner: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Di 26.02.2008
Autor: cody

Aufgabe
Bestimme die Lösungsmenge der Gleichung !
[mm] \bruch{7}{x+1}+ /´\bruch{5}{x-1}= \bruch{10}{x^2-1} [/mm]

Naaa,
könnte mir jemand anhand dieser Aufgabe erklären, wie man den Hauptnenner berechnet ?
Mein Vorschlag wäre: [mm] \bruch{ ...}{x^2-1} [/mm]

Schon einmal vielen Dank im Voraus ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hauptnenner: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 12:54 Di 26.02.2008
Autor: Roadrunner

Hallo cody!


Dein Hauptnenner ist richtig. [ok]

Bedenke nun noch, dass gilt: [mm] $x^2-1 [/mm] \ = \ (x+1)*(x-1)$ .


Gruß vom
Roadrunner


Bezug
                
Bezug
Hauptnenner: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Di 26.02.2008
Autor: cody

Vielen Dank ^^
Jetzt habe ich als nächste Schritte :

[mm] \bruch{(7x-1)+(5x+5)}{x^2-1} [/mm] = [mm] \bruch{10}{x^2-1} [/mm]
        12x+4 = 10
          12x = 6
            x [mm] =\bruch{1}{2} [/mm]
DIESE LÖSUNG IST ALLERDINGS NICHT KORREKT !
Die richtige Lösung wäre : L { }

Es wäre echt nett, wenn mir jemand den richtigen Lösungsweg zeigen könnte ;)

Bezug
                        
Bezug
Hauptnenner: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Di 26.02.2008
Autor: schachuzipus

Hallo cody,


> Vielen Dank ^^
>  Jetzt habe ich als nächste Schritte :
>  
> [mm] \bruch{(7x-1) +(5x+5)}{x^2-1} [/mm] [notok] = [mm] \bruch{10}{x^2-1} [/mm]

Hier hast du dich verrechnet: [mm] $7(x-1)=7x-\red{7}$ [/mm]

>          12x+4 = 10
>            12x = 6
>              x [mm]=\bruch{1}{2}[/mm]
>  DIESE LÖSUNG IST ALLERDINGS NICHT KORREKT !
>  Die richtige Lösung wäre : L { } [ok]

das sehe ich auch so :-)

>  
> Es wäre echt nett, wenn mir jemand den richtigen Lösungsweg
> zeigen könnte ;)

LG

schachuzipus

Bezug
                                
Bezug
Hauptnenner: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Di 26.02.2008
Autor: cody

Gut, dann habe ich das jetzt verstanden ;)

Bezug
                                        
Bezug
Hauptnenner: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 26.02.2008
Autor: cody

Die weitere Rechnung :

[mm] \bruch{(7x-7)+(5x+5)}{x^2-1} [/mm] = [mm] \bruch {10}{x^2-1} [/mm]
      12x-2 = 10
        12x = 12
          x = 1

Aber das ist wieder falsch. (richtige Lösung: L= { })
Iwie wird die Aufgabe bei mir nicht richtig ... :(

Bezug
                                                
Bezug
Hauptnenner: Definitionsmenge beachten
Status: (Antwort) fertig Status 
Datum: 14:01 Di 26.02.2008
Autor: Roadrunner

Hallo cody!


Beachte die Definitionsmenge dieser Gleichung! Darf man den Wert $x \ = \ 1$ einsetzen?


Gruß vom
Roadrunner


Bezug
                                                        
Bezug
Hauptnenner: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Di 26.02.2008
Autor: cody

Nein, darf man nicht.
Die Definitionsmenge ist -1, 1 .
Und ich dachte schon, dass ich das jetzt gar nicht mehr könnte ... :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]