matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenProzesse und MatrizenHauptachsentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Prozesse und Matrizen" - Hauptachsentransformation
Hauptachsentransformation < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: transformieren
Status: (Frage) beantwortet Status 
Datum: 00:24 Di 17.05.2011
Autor: Elektro21

Aufgabe
Hallo ich benötige eure hilfe bei einer Aufgabe.

Führen Sie für die folgende Gleichung die Hauptachsentransformation durch und entscheiden Sie, um welche Art von
Kegelschnitt es sich handelt:

[mm] 2x1^2 [/mm] + 3x1x2 - [mm] 2x2^2 [/mm] - 4x1 - 3x2 -23 = 0
Ich wäre vor allem für ein paar ansätze dankbar.
Danke im voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Di 17.05.2011
Autor: qsxqsx

Hallo,

1. Stelle die Matrix, die diesen Kegelschnitt beschreibt, auf.

2. Diagonalisiere sie, sodass du die Hauptachsenlage bekommst.

Gruss

Bezug
                
Bezug
Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Do 19.05.2011
Autor: Elektro21

Hallo . Kannst du mir bitte sagen wie ich diese Matrix aufstellen soll , weil genau , dass kriege ich ja nicht hin.
Ich hab ja im Moment nur einen Eigenvektor , weil der 2 0 ist.
Aber was für eine Matrix soll ich den jetzt genau herstellen.

Danke im voraus

Bezug
                        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Do 19.05.2011
Autor: MathePower

Hallo Elektro21,

> Hallo . Kannst du mir bitte sagen wie ich diese Matrix
> aufstellen soll , weil genau , dass kriege ich ja nicht
> hin.
>  Ich hab ja im Moment nur einen Eigenvektor , weil der 2 0
> ist.
>  Aber was für eine Matrix soll ich den jetzt genau
> herstellen.


Diesen Kegelschnitt kannst Du durch die Matrix-Vektor-Schreibweise
wie folgt beschreiben:

[mm]\pmat{x_{1} & x_{2}}\pmat{a_{11} & a_{12} \\ a_{12} & a_{22}}\pmat{x_{1} \\ x_{2}}+2*\pmat{b_{1} & b_{2}}\pmat{x_{1} \\ x_{2}}+c=0[/mm]

Hier ist

[mm]\pmat{a_{11} & a_{12} \\ a_{12} & a_{22}}[/mm]

diejenige Matrix, die diagonalisiert werden soll.



>  
> Danke im voraus


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]