matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesHauptachsentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Hauptachsentransformation
Hauptachsentransformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Fr 06.07.2007
Autor: Engel205

Hallo ihr Lieben, ich bin fleißig am lernen, weil ich am Montag eine Klausur in LinA 2 schreibe. Dabei bin ich über unsere Probeklausur gestolpert und mir ist eine Aufgabe aufgefallen...

Führen sie für die reelle symmetrische Matrix [mm] \pmat{ 1 & \wurzel{3} & 0 \\ \wurzel{3} & -1 & 0 \\ 0 & 0 & 1 } [/mm]
eine Hauptachsentransformation durch, das heißt, bestimmen sie eine Matrix T aus O(3) (orthogonale Gruppe), deren Spalten Eigenvektoren von A sind. Geben sie auch [mm] T^{-1}AT [/mm] an.

So wie mache ich das jetzt? Muss ich Eigenvektoren der Matrix bestimmen oder muss ich sie invertieren?
Bin grad ein wenig durcheinander, zu viel im Kopf....

Hoffe ihr könnt mir helfen.

Lieben Gruß und danke schonmal!

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Fr 06.07.2007
Autor: Somebody


> Hallo ihr Lieben, ich bin fleißig am lernen, weil ich am
> Montag eine Klausur in LinA 2 schreibe. Dabei bin ich über
> unsere Probeklausur gestolpert und mir ist eine Aufgabe
> aufgefallen...
>  
> Führen sie für die reelle symmetrische Matrix [mm]\pmat{ 1 & \wurzel{3} & 0 \\ \wurzel{3} & -1 & 0 \\ 0 & 0 & 1 }[/mm]
>  
> eine Hauptachsentransformation durch, das heißt, bestimmen
> sie eine Matrix T aus O(3) (orthogonale Gruppe), deren
> Spalten Eigenvektoren von A sind. Geben sie auch [mm]T^{-1}AT[/mm]
> an.
>  
> So wie mache ich das jetzt?

Lass Dich von der Aufgabenstellung führen: bestimme also zunächst drei (linear unabhängige) Eigenvektoren von $A$ (da die Matrix symmetrisch ist, wird dies sicher möglich sein). Der Eigenvektor zum Eigenwert 1 ist direkt aus der Matrix ablesbar. Dann hat $A$ noch die weiteren Eigenwerte 2 und -2 mit je dazugehörigen Eigenvektoren.

> Muss ich Eigenvektoren der Matrix bestimmen

Ja, siehe oben. Dann verwendest Du, genau so, wie dies in der Aufgabenstellung steht, diese drei Eigenvektoren als Spalten einer Basistransformationsmatrix $T$.

> oder muss ich sie invertieren?

Invertieren musst Du nicht die Matrix $A$ sondern die Matrix $T$. Genauer, Du musst wieder nur genau das machen, was ja in der Aufgabenstellung ausdrücklich geschrieben wird: Du musst [mm] $T^{-1}AT$ [/mm] berechnen. Zur Kontrolle: In der Diagonalen der so transformierten Matrix müssen die drei Eigenwerte (2,-2 und 1) stehen.


Bezug
                
Bezug
Hauptachsentransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 Sa 07.07.2007
Autor: Engel205

Super ok danke so hätte ich das auch gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]