matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenHauptachsentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Hauptachsentransformation
Hauptachsentransformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mi 16.07.2014
Autor: SturmGhost

Aufgabe
Es sei [mm] f:\IR^3 \to \IR [/mm] eine Fläche mit:

[mm] f(x,y,z):=4x^2+y^2-6yz+z^2-8x-8y+8z+12=0 [/mm]

Führen Sie eine Hauptachsentransformation für f durch und geben Sie die Normalform ~f der Fläche an.

Ich bin bei dieser Aufgabe eig. weit gekommen allerdings weiß ich nicht wie ich am Ende weitermachen soll.

Ich kürze mal ein wenig ab:

A= [mm] \pmat{ 4 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 1 } [/mm]

Deren Eigenwerte sind [mm] \lambda=4,4,-2 [/mm]

Die orthogonale Transformationsmatrix Q ist:

[mm] Q=\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} } [/mm]

Angewendet wird nun

x=Qy

es ergibt sich

[mm] f(x)=y^{T}Dy+2b^{T}Qy+c=0 [/mm]

mit

[mm] y=\vektor{u \\ v \\ w} [/mm]

Ich erhalte also

[mm] f(x)=\pmat{ u & v & w }^{T}\pmat{ 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2}\vektor{u \\ v \\ w}+2\pmat{ -4 & -4 & 4 }^{T}\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} }\pmat{ u \\ v \\ w }+12=0 [/mm]

Alles ausgeklammert und die *2 weggelassen (warum überhaupt?):

[mm] 4u^2+4v^2-2w^2-4u+4\sqrt{2}v+12=0 [/mm]

Quadratisch Ergänzt:

[mm] 4((u-\bruch{1}{2})^2+\bruch{11}{4})+4((v+\bruch{1}{\sqrt{2}})^2-\bruch{1}{2})-2w^2=0 [/mm]

Ist das jetzt die Normalform? Was soll ich daran erkennen können? Oder muss ich noch etwas tun? Bin etwas ratlos bei diesem Verfahren.

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mi 16.07.2014
Autor: MathePower

Hallo SturmGhost,

> Es sei [mm]f:\IR^3 \to \IR[/mm] eine Fläche mit:
>  
> [mm]f(x,y,z):=4x^2+y^2-6yz+z^2-8x-8y+8z+12=0[/mm]
>  
> Führen Sie eine Hauptachsentransformation für f durch und
> geben Sie die Normalform ~f der Fläche an.
>  Ich bin bei dieser Aufgabe eig. weit gekommen allerdings
> weiß ich nicht wie ich am Ende weitermachen soll.
>  
> Ich kürze mal ein wenig ab:
>  
> A= [mm]\pmat{ 4 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 1 }[/mm]
>  
> Deren Eigenwerte sind [mm]\lambda=4,4,-2[/mm]
>  
> Die orthogonale Transformationsmatrix Q ist:
>  
> [mm]Q=\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} }[/mm]
>  
> Angewendet wird nun
>  
> x=Qy
>  
> es ergibt sich
>
> [mm]f(x)=y^{T}Dy+2b^{T}Qy+c=0[/mm]
>
> mit
>
> [mm]y=\vektor{u \\ v \\ w}[/mm]
>  
> Ich erhalte also
>  
> [mm]f(x)=\pmat{ u & v & w }^{T}\pmat{ 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2}\vektor{u \\ v \\ w}+2\pmat{ -4 & -4 & 4 }^{T}\pmat{ 1 & 0 & 0 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} }\pmat{ u \\ v \\ w }+12=0[/mm]
>  


[ok]


> Alles ausgeklammert und die *2 weggelassen (warum
> überhaupt?):
>  
> [mm]4u^2+4v^2-2w^2-4u+4\sqrt{2}v+12=0[/mm]

>


Der lineare Teil ist noch mit 2 zu mulitplizieren:

[mm]4u^2+4v^2-2w^2-4u*\blue{2}+4\sqrt{2}v*\blue{2}+12=0[/mm]  


> Quadratisch Ergänzt:
>  
> [mm]4((u-\bruch{1}{2})^2+\bruch{11}{4})+4((v+\bruch{1}{\sqrt{2}})^2-\bruch{1}{2})-2w^2=0[/mm]
>  
> Ist das jetzt die Normalform? Was soll ich daran erkennen
> können? Oder muss ich noch etwas tun? Bin etwas ratlos bei
> diesem Verfahren.


Hier hast Du durch die quadratische Ergänzung eine nochmalige Transformation.

Setze z.B. r:=u+c, s:=v+d, t:=w+e


Gruss
MathePower

Bezug
                
Bezug
Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 16.07.2014
Autor: SturmGhost

Hm, warum klammert man laut Skript erst die 2 aus und schmeißt die dann wieder rein?

Du meinst ich soll die Klammern substituieren?

[mm] 4(\alpha^2+\bruch{11}{4})+4(\beta^2-\bruch{1}{2})-2w^2=0 [/mm]


Edit: Habe noch einmal mit der *2 gerechnet und nun habe ich:

[mm] 4(u-1)^2+4(v+\sqrt{2})^2-2w^2=0 [/mm]

Also wenn ich mal die Klammern substituieren:

[mm] 4\alpha^2+4\beta^2-2w^2=0 [/mm]

Bin ich damit fertig?

Bezug
                        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Do 17.07.2014
Autor: MathePower

Hallo SturmGhost,

> Hm, warum klammert man laut Skript erst die 2 aus und
> schmeißt die dann wieder rein?

>


Keine Ahnung.


> Du meinst ich soll die Klammern substituieren?
>


Ja.


> [mm]4(\alpha^2+\bruch{11}{4})+4(\beta^2-\bruch{1}{2})-2w^2=0[/mm]
>  
> Edit: Habe noch einmal mit der *2 gerechnet und nun habe
> ich:
>  
> [mm]4(u-1)^2+4(v+\sqrt{2})^2-2w^2=0[/mm]
>  
> Also wenn ich mal die Klammern substituieren:
>  
> [mm]4\alpha^2+4\beta^2-2w^2=0[/mm]
>
> Bin ich damit fertig?


Jetzt kannst Du noch eine Schönheitskorrektur anbringen,
um den Typ zu charakterisieren, wobei Du das auch jetzt schon kannst:

[mm]\tilde{\alpha}=2\alpha, \ \tilde{\beta}=2\beta, \ \tilde{w}=\wurzel{2}w[/mm]

Das liefert dann:

[mm]\tilde{\alpha}^{2}+\tilde{\beta}^{2}-\tilde{w}^{2}=0[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]