matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenHarmonische Reihe, abschätzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Harmonische Reihe, abschätzen
Harmonische Reihe, abschätzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Reihe, abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 05.10.2012
Autor: Lu-

Aufgabe
j [mm] \in \IN, [/mm]
t(j)..Anzahl der Teiler von j,
t'(j).. durchschnittliche Anzahl der Teiler der Zahlen von 1 bis n, also
t' (n) := 1/n [mm] \sum_{i=1}^n [/mm] t(i)
In der Vorlesung gezeigt t' (n) = 1/n [mm] \sum_{i=1}^n [\frac{n}{i}] [/mm]
Folgerne [mm] H_n [/mm] -1 < =  t'(n) <= [mm] H_n [/mm]
wobei [mm] H_n [/mm] die harmonische Zahl bezeichnet.
[].. Gaußklammer

Hallo
Da [mm] H_n [/mm] - t'(n) >=0 ist mit geeigneter Abschätzung von t'(n)
ist die Abschätzung: t'(n) < = [mm] H_n [/mm] klar.

Wie kommt man aber nun auf die Abschätzung [mm] H_n [/mm] -1 < =  t'(n) ?
Hier wird die harmonische Reihe um das erste Glied verkürzt :
[mm] H_n [/mm] -1 = [mm] \sum_{i=2}^n [/mm] 1/i

Mfg,
LU

        
Bezug
Harmonische Reihe, abschätzen: Gaussklammer
Status: (Antwort) fertig Status 
Datum: 17:59 Fr 05.10.2012
Autor: Helbig

Hallo Lu,

> Wie kommt man aber nun auf die Abschätzung [mm]H_n[/mm] -1 < =  
> t'(n) ?
>  Hier wird die harmonische Reihe um das erste Glied
> verkürzt :
>  [mm]H_n[/mm] -1 = [mm]\sum_{i=2}^n[/mm] 1/i

Die Gaussklammer [mm] $[\alpha]$ [/mm] genügt den beiden Ungleichungen:

[mm] $\alpha [/mm] -1 < [mm] [\alpha] \le \alpha\;.$ [/mm]

Die zweite hast Du schon für die Abschätzung nach oben, ich meine [mm] $t'(n)\le H_n$, [/mm] verwendet. Daher liegt es nahe, die andere für die Abschätzung nach unten zu nutzen. Mach das.

Gruß,
Wolfgang


Bezug
                
Bezug
Harmonische Reihe, abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Fr 05.10.2012
Autor: Lu-

Hallo,
Danke für den Hinweis

[mm] H_n [/mm] - t' (n) = [mm] \sum_{i=1}^n [/mm] 1/i- 1/n [mm] \sum_{i=1}^n [\frac{n}{i}] [/mm] < [mm] \sum_{i=1}^n [/mm] 1/i - 1/n [mm] \sum_{i=1}^n (\frac{n}{i}-1) [/mm]
= [mm] \sum_{i=1}^n [/mm] 1/i - [mm] \sum_{i=1}^n (\frac{1}{i}-1)=\sum_{i=1}^n [/mm] 1 = n
Ist das richtig so?

Liebe Grüße

Bezug
                        
Bezug
Harmonische Reihe, abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Fr 05.10.2012
Autor: Lu-

Den blöden Fehler hab ich längst bemerkt, hab es unüberlegt abgesendet ;)


Bezug
                        
Bezug
Harmonische Reihe, abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 05.10.2012
Autor: Helbig

Hallo Lu-

> [mm]H_n[/mm] - t' (n) = [mm]\sum_{i=1}^n[/mm] 1/i- 1/n [mm]\sum_{i=1}^n [\frac{n}{i}][/mm]
> < [mm]\sum_{i=1}^n[/mm] 1/i - 1/n [mm]\sum_{i=1}^n (\frac{n}{i}-1)[/mm]
> [mm]=\sum_{i=1}^n[/mm] 1/i - [mm]\sum_{i=1}^n (\frac{1}{i}-1)=\sum_{i=1}^n1 = n[/mm]
>  Ist das richtig so?

Fast. Bis zum vorletzten Gleichheitszeichen. Und Du willst als Ergebnis ja $1$ haben und nicht $n$. Das bekommst Du so:

[mm] $\frac [/mm] 1 n [mm] \sum_{i=1}^n \left(\frac n i - 1\right) [/mm] = [mm] \sum_{i=1}^n\left(\frac 1 i - \frac 1 n \right) [/mm] = [mm] \sum_{i=1}^n\frac [/mm] 1 i - [mm] 1\;.$ [/mm]

Grüße,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]