matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisHarmonische Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Harmonische Funktionen
Harmonische Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 06:03 So 24.04.2011
Autor: Rubstudent88

Aufgabe 1
Eine 2-mal stetig partiell diffenrenzierbare Funktion f: [mm] \IC \to \IC [/mm] heißt harmonisch, falls gilt: [mm] (\bruch{\delta^{2}}{\delta x^{2}}+\bruch{\delta^{2}}{\delta y^{2}})(f)=0 [/mm]
Zeigen [mm] Sie:\bruch{\delta^{2}}{\delta x^{2}}+\bruch{\delta^{2}}{\delta y^{2}}=4*\bruch{\delta}{\delta \overline{z}}*\bruch{\delta}{\delta z} [/mm]

Aufgabe 2
Es sei f: [mm] \IC \to \IC [/mm] komplex differenzierbar und 2-mal stetig partiell differenzierbar. Zeigen Sie F: f,Re(f) und Im(f) sind harmonisch.

Aufgabe 3
Es sei [mm] h(x+iy)=ax^2+by^2+cxy+dx+ey+f [/mm] ein komplexwertiges Polynom, (a,b,c,d,e,f [mm] \in \IC). [/mm] Bestimmen Sie alle a,b,c,d,e,f so dass h harmonisch ist.

Guten Morgen zusammen,

auch bei dieser Aufgabe fände ich eine Hilfe von euch cool :).

Aufgabe 1

Ich habe zwei Ansätze. Entweder ersetze ich die z durch x+iy bzw. [mm] \overline{z} [/mm] durch x-iy oder ich ersetze x durch [mm] \bruch{1}{2}(z+\overline{z}) [/mm] bzw. y durch [mm] -\bruch{1}{2}i(z+\overline{z}). [/mm]
Nur irgendwie komme ich mit beiden Ansätzen nicht wirklich weit. Wenn ich den zweiten nehme steht da:
[mm] \bruch{\delta^{2}}{\delta \bruch{1}{4}z^2+\bruch{2}{4}z\overline{z}+\bruch{1}{4}\overline{z}^2}+\bruch{\delta^{2}}{\delta (-\bruch{1}{4}z^2+\bruch{2}{4}z\overline{z}-\bruch{1}{4}\overline{z}^2)}. [/mm] Joa und dann weiß ich nicht weiter.

Aufgabe 2
Meine Idee wäre hier über die Cuahy Rieman Gleichungen zu gehen, wäre das der richtige Ansatz? Schauen ob die partiellen Ableitungen mit der obigen Definition zusammgebracht werden?

Aufgabe 3
Ableitungen bilden und nach obiger Defintion ausrechnen?

Beste Grüße

        
Bezug
Harmonische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 So 24.04.2011
Autor: leduart

Hallo
zu a) schreib [mm] f(x+iy)=f((z+\overline{z})/2+(z-\overline{z})/2 [/mm]
zu b) :einfach ausrechnen
Gruss leduart


Bezug
                
Bezug
Harmonische Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 03:21 Mo 25.04.2011
Autor: Rubstudent88

Hat sich erledigt, hab es rausgefunden!

Bezug
                        
Bezug
Harmonische Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Mi 27.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]