matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenHarmonische Funktion nachweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Harmonische Funktion nachweise
Harmonische Funktion nachweise < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Funktion nachweise: LaPlace-Operator anwenden
Status: (Frage) überfällig Status 
Datum: 16:31 Mi 05.05.2010
Autor: karlhungus

Aufgabe
Zeige, dass [mm] g_n [/mm] : [mm] \IR^n [/mm] \ {0} [mm] \to \IR [/mm] mit

[mm] g_n(x)=\begin{cases} ln(||y||), & \mbox{für } n \mbox = 2 \\ ||x||^{2-n}, & \mbox{für } n \mbox > 2 \end{cases} [/mm]    harmonisch ist.

Hallo,

um die Harmonie der Funktion nachzuweisen, muss sie im Kern des LaPlace-Operators liegen, d.h. ich würde eine Fallunterscheidung (n = oder größer 2) vornehmen und würde für beides den LaPlace-Operator ausschreiben, im zweiten Fall also eine Summe bis n. Für den 1. Fall (n=2)

[mm] \bruch{\partial^2ln(||x,y||)}{\partial x^2} [/mm] + [mm] \bruch{\partial^2ln(||x,y||)}{\partial y^2} [/mm] = 0 , oder?

Mir ist nun einfach nicht klar, wie ich eigentlich die 2te Ableitung nach x, bzw. y bewerkstelligen soll, wie ich also mit der norm zu verfahren hab. Es wäre nett, wenn mir jemand sagen könnte, wie das geht und, ob es soweit ein korrektes vorgehen ist.

Vielen Dank im voraus.

        
Bezug
Harmonische Funktion nachweise: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mi 05.05.2010
Autor: james_brown

Dafür musst du dir nur überlegen, wie denn die Norm eines Vektors im [mm] R^2 [/mm] bzw. im [mm] R^n [/mm] definiert ist.
Das ganze setzt du nun in deine Funktion ein und kannst mittels Kettenregel die Ableitungen ausrechnen.

Bezug
        
Bezug
Harmonische Funktion nachweise: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 07.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]