Hamiltonfunktion < Mechanik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Auf einem parabelförmig gebogenem Draht [mm] (z=Ar^{2}), [/mm] der sich mit konstanter Winkelgeschwindigkeit [mm] \omega [/mm] um die z-Achse dreht, gleitet reibungsfrei ein Massepunkt der Masse m. Zusätzlich wirkt auf ihn die Schwerkraft in negativer z-Richtung.
(i) Wieviele und welche Zwangsbedingungen gibt es?
(ii) Stellen Sie die Bewegungsgleichungen auf.
(iii) Berechnen Sie den Unterschied zwischen Hamiltonfunktion H und Energie E. Welche der beiden ist erhalten? |
Hallo,
ich habe das mal gemacht. Zu (i) Eine Zwangsbedingung ist ja bereits angegeben. Dann müsste doch noch die Länge des Drahtes eigentlich konstant sein, aber wie ich das in Gleichungen ausdrücken soll, weiß ich noch nicht.(ii) Nimmt man als Ortsvektor für den Massepunkt [mm] \vec{r}=(r\cos(\omega t),r\sin(\omega t),Ar^{2}) [/mm] (r=r(t)), so komme ich zu der Bewegungsgleichung [mm] 0=m\ddot{r}+4mA^{2}r^{2}\ddot{r}+8mA^{2}r\dot{r}^{2}. [/mm] Man kann es dann noch umstellen zu [mm] \ddot{r}=-2\frac{\dot{r}^{2}}{r}. [/mm] (iii) Der kanonische Impuls ergibt sich bei mir zu [mm] p_{r}=\dot{r}(m+4mA^{2}r^{2})
[/mm]
Dann komme ich zu der Hamiltonfunktion: [mm] H=p_{r}\dot{r}-L=\frac{p_{r}^{2}}{m+4mA^{2}r^{2}}-\frac{m}{2}\frac{p_{r}^{2}}{(m+4mA^{2}r^{2})^{2}}(1+4A^{2}r^{2})-\frac{m}{2}\omega^{2}r^{2}+mgAr^{2}.Für [/mm] die Energie gilt: [mm] E=T+V=\frac{m}{2}\frac{p_{r}^{2}}{(m+4mA^{2}r^{2})^{2}}(1+4A^{2}r^{2})+\frac{m}{2}\omega^{2}r^{2}+mgAr^{2}.Daraus [/mm] kann man die Differenz berechnen. Nun mal meine Fragen: Erstmal ist das so richtig?
Ist es nicht eigentlich so, dass H=E ist, selbst wenn die Lagrange Funktion zeitabhängig ist. Letztenendes wäre dann natürlich der letzte Aufgabenteil unlogisch. Außerdem dachte ich, dass H erhalten ist. Aber hier muss ja auf jeden Fall auch E erhalten sein, wegen Reibungsfreiheit. Was stimmt nun?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Fr 18.02.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:55 So 20.02.2011 | Autor: | mathfunnel |
Hallo [mm] T\_sleeper!
[/mm]
> Auf einem parabelförmig gebogenem Draht [mm](z=Ar^{2}),[/mm] der
> sich mit konstanter Winkelgeschwindigkeit [mm]\omega[/mm] um die
> z-Achse dreht, gleitet reibungsfrei ein Massepunkt der
> Masse m. Zusätzlich wirkt auf ihn die Schwerkraft in
> negativer z-Richtung.
>
> (i) Wieviele und welche Zwangsbedingungen gibt es?
>
> (ii) Stellen Sie die Bewegungsgleichungen auf.
>
> (iii) Berechnen Sie den Unterschied zwischen
> Hamiltonfunktion H und Energie E. Welche der beiden ist
> erhalten?
> Hallo,
>
> ich habe das mal gemacht. Zu (i) Eine Zwangsbedingung ist
> ja bereits angegeben. Dann müsste doch noch die Länge des
> Drahtes eigentlich konstant sein, aber wie ich das in
> Gleichungen ausdrücken soll, weiß ich noch nicht.
Es gibt zwei rheonome und holonome Zwangsbedingungen der Form
[mm] $Z_1(x,y,z,t) [/mm] = 0$ und [mm] $Z_2(x,y,z,t) [/mm] = 0$. Welche?
Die Länge $L$ des Drahtes spielt hier keine Rolle.
> (ii)
> Nimmt man als Ortsvektor für den Massepunkt
> [mm]\vec{r}=(r\cos(\omega t),r\sin(\omega t),Ar^{2})[/mm] (r=r(t)),
> so komme ich zu der Bewegungsgleichung
> [mm]0=m\ddot{r}+4mA^{2}r^{2}\ddot{r}+8mA^{2}r\dot{r}^{2}.[/mm] Man
> kann es dann noch umstellen zu
> [mm]\ddot{r}=-2\frac{\dot{r}^{2}}{r}.[/mm]
Die Lagrangesche Bewegungsgleichung ergibt hier sich aus:
[mm] $\frac{d}{dt}\frac{\partial L}{\partial \dot{r}} [/mm] - [mm] \frac{\partial L}{\partial r} [/mm] = 0$
Korrigieren!
> (iii) Der kanonische
> Impuls ergibt sich bei mir zu
> [mm]p_{r}=\dot{r}(m+4mA^{2}r^{2})[/mm]
>
> Dann komme ich zu der Hamiltonfunktion:
> [mm]H=p_{r}\dot{r}-L=\frac{p_{r}^{2}}{m+4mA^{2}r^{2}}-\frac{m}{2}\frac{p_{r}^{2}}{(m+4mA^{2}r^{2})^{2}}(1+4A^{2}r^{2})-\frac{m}{2}\omega^{2}r^{2}+mgAr^{2}.Für[/mm]
> die Energie gilt:
> [mm]E=T+V=\frac{m}{2}\frac{p_{r}^{2}}{(m+4mA^{2}r^{2})^{2}}(1+4A^{2}r^{2})+\frac{m}{2}\omega^{2}r^{2}+mgAr^{2}.Daraus[/mm]
> kann man die Differenz berechnen. Nun mal meine Fragen:
> Erstmal ist das so richtig?
Ja.
Etwas einfacher aufgeschrieben:
[mm] $H(r,\dot{r}) [/mm] = [mm] \frac{1}{2}m\dot{r}^2(1+4A^2 r^2) [/mm] - [mm] \frac{1}{2}m \omega^2r^2 [/mm] + mgr^2A$
$E = T+V = [mm] \frac{1}{2}m \dot{r}^2(1+4A^2 r^2) +\frac{1}{2}m \omega^2r^2 [/mm] + mgr^2A$
>
> Ist es nicht eigentlich so, dass H=E ist, selbst wenn die
> Lagrange Funktion zeitabhängig ist. Letztenendes wäre
> dann natürlich der letzte Aufgabenteil unlogisch.
> Außerdem dachte ich, dass H erhalten ist. Aber hier muss
> ja auf jeden Fall auch E erhalten sein, wegen
> Reibungsfreiheit. Was stimmt nun?
Es ist $H=E=T+V$, wenn die Zwangskräfte keine Arbeit leisten (wie bei zeitunabhängigen Zwangskräften) und $V$ geschwindigkeitsunabhängig ist.
Ist die Lagrangefunktion und somit die Hamiltonfunktion nicht (explizit) zeitabhängig (wie hier), so ist die Hamiltonfunktion eine Erhaltungsgröße.
Betrachtet man $L' := T - V'$ mit $V' = V + [mm] \frac{1}{2}m\omega^2r^2$ [/mm] und $H' := [mm] \dot{r}p_r [/mm] - L'$, so sieht man, dass $H' = T+V'$.
Das bedeutet, dass $L$ bzw. $H$ nicht die durch die Zwangskräfte geleisteten Arbeit [mm] $\frac{1}{2}m\omega^2r^2$ [/mm] berücksichtigt.
Die Reibungsfreiheit reicht nicht für die Erhaltung der mechanischen Energie, da die Zwangskräfte Arbeit verrichten!
LG mathfunnel
|
|
|
|