matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisHalbkreis parameterisieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Halbkreis parameterisieren
Halbkreis parameterisieren < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbkreis parameterisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 So 05.05.2013
Autor: theresetom

Wie parameterisiert man einen Halbkreis mit Mittelpunkt 0 und Radius R sodass man den gesamten Rand mit gerade Stück des Halbkreises parametrisiert?
        
Bezug
Halbkreis parameterisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 So 05.05.2013
Autor: abakus


> Wie parameterisiert man einen Halbkreis mit Mittelpunkt 0
> und Radius R sodass man den gesamten Rand mit gerade Stück
> des Halbkreises parametrisiert?

Hallo,
wie wäre es denn mit
x(t)=R*cos(t) für [mm]0\le t \le \pi[/mm]
und x(t)=-R+(t-[mm]\pi[/mm]) für [mm]\pi y(t) wird entsprechend mit dem Sinus gemacht und ist im zweiten Abschnitt konstant Null.
 

Bezug
                
Bezug
Halbkreis parameterisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 So 05.05.2013
Autor: theresetom

Geht genauso:
[mm] \gamma(t)=\begin{cases} R e^{it}, & \mbox{für } t\in [0,\pi] \\ -R+(t- \pi ), & \mbox{für } t\in (\pi,\pi+2R] \end{cases} [/mm]

2 Fragen hätte ich zu dem Halbkreis.
1) Ist [mm] \gamma [/mm] nullhomotop?
Ich denke schon, dass man den Halbkreis auf einen Punkt zusammenziehen kann aber finde kein stetiges H, dass dies machen würde.

2) Kann man die Windungszahl ausrechnen?
DIe Formel ist:
[mm] Ind_\gamma [/mm] (z)= [mm] \frac{1}{2 \pi i} \int_\gamma \frac{1}{\epsilon-z} [/mm] d [mm] \epsilon [/mm]
[mm] Ind_\gamma [/mm] (z) (0) = 1/(2 [mm] \pi i)*[\int_0^{\pi} \frac{1}{R e^{it}} [/mm] Ri [mm] e^{it} [/mm] dt + [mm] \int_{\pi}^{\pi + 2R} \frac{1}{-R+(t-\pi)} [/mm] ]dt
= [mm] \frac{1}{2 \pi i} (\pi [/mm] i + ln(R)- ln(-R))

Bezug
                        
Bezug
Halbkreis parameterisieren: Nullhomotopie
Status: (Antwort) fertig Status 
Datum: 11:25 Mo 06.05.2013
Autor: Al-Chwarizmi


>  1) Ist [mm]\gamma[/mm] nullhomotop?
>  Ich denke schon, dass man den Halbkreis auf einen Punkt
> zusammenziehen kann aber finde kein stetiges H, dass dies
> machen würde.


Man kann doch eine stetige lineare Kontraktion nehmen:
[mm] H(t,k)=k*\gamma(t) [/mm]     ,  $\ [mm] 1\ge k\ge0$ [/mm]

LG ,   Al-Chw.

Bezug
                        
Bezug
Halbkreis parameterisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 06.05.2013
Autor: fred97


> Geht genauso:
>  [mm]\gamma(t)=\begin{cases} R e^{it}, & \mbox{für } t\in [0,\pi] \\ -R+(t- \pi ), & \mbox{für } t\in (\pi,\pi+2R] \end{cases}[/mm]
>  
> 2 Fragen hätte ich zu dem Halbkreis.
>  1) Ist [mm]\gamma[/mm] nullhomotop?


Die Frage ist sinnlos !

Es gehört immer eine Grundmenge dazu !

Z. B. ist [mm]\gamma[/mm] nullhomotop in [mm] \IC. [/mm]

[mm]\gamma[/mm] ist aber nicht nullhomotop in [mm] \IC [/mm] \ { [mm] i*\bruch{R}{2} [/mm] }


>  Ich denke schon, dass man den Halbkreis auf einen Punkt
> zusammenziehen kann aber finde kein stetiges H, dass dies
> machen würde.
>  
> 2) Kann man die Windungszahl ausrechnen?
>  DIe Formel ist:
> [mm]Ind_\gamma[/mm] (z)= [mm]\frac{1}{2 \pi i} \int_\gamma \frac{1}{\epsilon-z}[/mm]
> d [mm]\epsilon[/mm]
>  [mm]Ind_\gamma[/mm] (z) (0) = 1/(2 [mm]\pi i)*[\int_0^{\pi} \frac{1}{R e^{it}}[/mm]
> Ri [mm]e^{it}[/mm] dt + [mm]\int_{\pi}^{\pi + 2R} \frac{1}{-R+(t-\pi)}[/mm]
> ]dt
>  = [mm]\frac{1}{2 \pi i} (\pi[/mm] i + ln(R)- ln(-R))


Bezug
                
Bezug
Halbkreis parameterisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 So 05.05.2013
Autor: abakus


> > Wie parameterisiert man einen Halbkreis mit Mittelpunkt 0
> > und Radius R sodass man den gesamten Rand mit gerade
> Stück
> > des Halbkreises parametrisiert?
> Hallo,
> wie wäre es denn mit
> x(t)=R*cos(t) für [mm]0\le t \le \pi[/mm]
> und x(t)=-R+(t-[mm]\pi[/mm])
> für [mm]\pi
> y(t) wird entsprechend mit dem Sinus
> gemacht und ist im zweiten Abschnitt konstant Null.
>  

Hallo,
mir ist für die y-Koordinate noch eine Version eingefallen, die ohne Fallunterscheidung auskommt:
y(t)=0,5*R*sin(t) + abs(0,5*R*sin(t)) mit t von 0 bis [mm] $2*\pi$. [/mm]
Die x-Koordinate ist dann einheitlich x(t)=cos(t).
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]