matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraHalbgruppenhomomorphismen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Halbgruppenhomomorphismen
Halbgruppenhomomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 So 24.10.2010
Autor: l1f3x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe gerade folgendes Problem: Es geht in einer Aufgabe hier darum, zu zeigen, dass ein Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen kein Monoidhomomorphismus ist. Dabei habe ich schon folgendes, grundlegendes Problem:
Warum gilt die bei Gruppen übliche Argumentation, dass das Bild des neutralen Elementes der einen Gruppe dem neutralen Element der anderen Gruppe entspricht, hier nicht? Damit meine ich folgendes:

[mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H [/mm]


        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:40 So 24.10.2010
Autor: felixf

Moin!

>  ich habe gerade folgendes Problem: Es geht in einer
> Aufgabe hier darum, zu zeigen, dass ein
> Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen
> kein Monoidhomomorphismus ist. Dabei habe ich schon
> folgendes, grundlegendes Problem:
> Warum gilt die bei Gruppen übliche Argumentation, dass das
> Bild des neutralen Elementes der einen Gruppe dem neutralen
> Element der anderen Gruppe entspricht, hier nicht? Damit
> meine ich folgendes:
>  
> [mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H[/mm]

Wenn $f$ surjektiv ist, gilt dies.

$f$ muss aber nicht surjektiv sein.

Und das, was du hingeschrieben hast, ist auch nicht das Argument, was man in Gruppen benutzt. Da macht man naemlich: [mm] $f(e_G) [/mm] = [mm] f(e_G [/mm] * [mm] e_G) [/mm] = [mm] f(e_G) [/mm] * [mm] f(e_G)$; [/mm] und wenn man mit [mm] $f(e_G)^{-1}$ [/mm] multipliziert, steht da [mm] $e_H [/mm] = [mm] f(e_G)$. [/mm]

Das meiste davon geht in einer Halbgruppe auch, aber der entscheidene Schritt, naemlich die Existenz von [mm] $f(e_G)^{-1}$, [/mm] die ist im Allgemeinen nicht gegeben!

(Und daran scheitert es dann auch...)

Was fuer echte Halbgruppen (die nicht gleichzeitig Gruppen sind) kennst du denn?

LG Felix


Bezug
                
Bezug
Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 24.10.2010
Autor: l1f3x

Danke schonmal! Mir ist jetzt klarer wo genau das Problem hier liegt. Als Monoide fallen mir die natürliche Zahlen ein, mit Addition oder Multiplikation als Verknüpfung. Da habe ich aber keine Idee wie ich einen entsprechenden Homomorphismus konstruieren könnte. Deshalb habe ich es mal mit dem Monoid versucht, der aus der Potenzmenge und der Inklusion als Verknüpfung besteht:

Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm] sind Monoide. Dann müsste folgende Abbildung:

[mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
Dabei ist m ein festes Element von M. Dies müsste ein Halbgruppenhomomorphismus sein. Aber da [mm]f(M)=M\not=N[/mm] kein Monoidhomomorphismus. Stimmt das? Gibt es da auch einfachere Beispiele?

Bezug
                        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 24.10.2010
Autor: felixf

Moin!

> Danke schonmal! Mir ist jetzt klarer wo genau das Problem
> hier liegt. Als Monoide fallen mir die natürliche Zahlen
> ein, mit Addition oder Multiplikation als Verknüpfung.

Die natuerlichen Zahen (inklusive Null!) zusammen mit der Multiplikation sind gut. Du kannst einen einfachen Halbgruppenmonomorphismus [mm] $\IN \to \IN \times \IN$ [/mm] angeben, der kein Monoidhomomorphismus ist.

> Da
> habe ich aber keine Idee wie ich einen entsprechenden
> Homomorphismus konstruieren könnte. Deshalb habe ich es
> mal mit dem Monoid versucht, der aus der Potenzmenge und
> der Inklusion als Verknüpfung besteht:
>  
> Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm]
> sind Monoide. Dann müsste folgende Abbildung:
>  
> [mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
>  
> Dabei ist m ein festes Element von M.

Warum nicht einfach gleich $f$ als Inklusion $G [mm] \to [/mm] H$? Das reicht hier schon voellig.

> Dies müsste ein
> Halbgruppenhomomorphismus sein.

Ja, das duerfte es.

> Aber da [mm]f(M)=M\not=N[/mm] kein
> Monoidhomomorphismus. Stimmt das?

Falls $M$ eine echte Teilmenge von $N$ ist, ja.

> Gibt es da auch
> einfachere Beispiele?  

Siehe oben :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]