matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieHalbebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Halbebene
Halbebene < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Mo 03.05.2010
Autor: Sandkastenrocker

Also sei eine Gerade g, die Punkte [mm] ABC\in [/mm] g und Punkt [mm] D,E\not\in [/mm] g. Und eine Halbebene definiert als [mm] ABD^{+}. [/mm]

-----------------A-----------------B---------------------C-------------------




                               D                                        E

Liegt Punkt E jetzt auch in der Halbebene?


        
Bezug
Halbebene: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 03.05.2010
Autor: fred97


> Also sei eine Gerade g, die Punkte [mm]ABC\in[/mm] g und Punkt
> [mm]D,E\not\in[/mm] g. Und eine Halbebene definiert als [mm]ABD^{+}.[/mm]
>
> -----------------A-----------------B---------------------C-------------------
>  
>
>
>
> D                                        E
>  
> Liegt Punkt E jetzt auch in der Halbebene?

Kläre mal Deine Bezeichnungsweisen ! Was ist [mm] D^{+} [/mm]

Oder ist [mm] (ABD)^{+} [/mm] gemeint ? Wenn ja, wie ist das def. ?

FRED

>  


Bezug
                
Bezug
Halbebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Mo 03.05.2010
Autor: Sandkastenrocker


> Kläre mal Deine Bezeichnungsweisen ! Was ist [mm]D^{+}[/mm]
>  
> Oder ist [mm](ABD)^{+}[/mm] gemeint ? Wenn ja, wie ist das def. ?

[mm] ABD^{+} [/mm] = die halbebene von der Strecke AB zum Punkt D hin
[mm] ABD^{-} [/mm] wäre vom Punkt D weg


Bezug
                        
Bezug
Halbebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Mo 03.05.2010
Autor: fred97


> > Kläre mal Deine Bezeichnungsweisen ! Was ist [mm]D^{+}[/mm]
>  >  
> > Oder ist [mm](ABD)^{+}[/mm] gemeint ? Wenn ja, wie ist das def. ?
>  
> [mm]ABD^{+}[/mm] = die halbebene von der Strecke AB zum Punkt D hin
>  [mm]ABD^{-}[/mm] wäre vom Punkt D weg

Vielleicht bin ich zu blöd für so was, ich verstehe es jedenfalls nicht !

FRED

>  


Bezug
                                
Bezug
Halbebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 03.05.2010
Autor: Sandkastenrocker

Interessant wäre auch wie ich die Halbebene definieren muss damit der Punkt D auch drin ist..


Bezug
                                        
Bezug
Halbebene: Tipp
Status: (Antwort) fertig Status 
Datum: 23:34 Mo 03.05.2010
Autor: Loddar

Hallo Sandkastenrocker!


> Interessant wäre auch wie ich die Halbebene definieren
> muss damit der Punkt D auch drin ist..

Du meinst doch jetzt den Punkt [mm] $\red{E}$ [/mm] , wenn man von $ABD^+$ ausgeht, oder?

Bestimme den Schnittpunkt der Gerade [mm] $\overline{ED}$ [/mm] mit der gegebenen Gerade $g \ = \ [mm] \overline{AB}$ [/mm] .

Liegt dieser Schnittpunkt innerhalb der Strecke [mm] $\overline{DE}$ [/mm] , befinden sich beide Punkte $D_$ und $E_$ auf unterschiedlichen Seiten der Gerade.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]