matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenHLDGL 1. Ordnung mit AWP
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - HLDGL 1. Ordnung mit AWP
HLDGL 1. Ordnung mit AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

HLDGL 1. Ordnung mit AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Sa 08.11.2008
Autor: phnx

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich versuche gerade die Herleitung der Lösung einer homogenen Differentialgleichung [mm]y'+g(x)=0[/mm] mit Anfangswertproblem ([mm]f(x_0)=y_0[/mm]) nachzuvollziehen und hänge bei dem letzten Schritt:

[mm]ln|y|-ln|y_0|=-G(x)+G(x_0) \gdw f(x)=y_0*e^{G(x_0)-G(x)}[/mm]

wieso kann ich hier die Beträge bei [mm]y_[/mm] und [mm]y_0[/mm] weglassen?

Danke im Voraus,
Benjamin


        
Bezug
HLDGL 1. Ordnung mit AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Sa 08.11.2008
Autor: Denny22

Stell die Aufgabe bitte mal so, wie Du sie gestellt bekommen hast. Irgendwie kann ich auf Anhieb nicht nachvollziehen, wo der Logarithmus wegkommt. Und daher weiß ich auch nicht von welchen Beträgen Du sprichst.

Gruß Denny

Bezug
                
Bezug
HLDGL 1. Ordnung mit AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Sa 08.11.2008
Autor: phnx

Ich habe leider nur die Herleitung aus unserem Skript (keine Aufgabenstellung), ich schreibe die mal ab:

Vorausgehendes Kapitel:
Lösung für explizite DGL 1. Ordnung mit getrennten Variablen [mm]y'=g_1(x)*g_2(y)[/mm]

[mm]\bruch{f'(x)}{g_2(f(x))}=g_1(x) \integral_{x_0}^{x}{\bruch{f'(x)}{g_2(f(x))} dt} = \integral_{x_0}^{x}{g_1(t) dt}[/mm]

Substitution [mm]u=f(t) \to du = f'(t)dt[/mm]
Abkürzung [mm]y_0 = f(x_0), y=f(x)[/mm]

[mm]\integral_{y_0}^{y}{\bruch{1}{g_2(u)} du} = \integral_{x_0}^{x}{g_1(t) dt}[/mm]


Zurück zu meinem Problem:
[mm]y'+g(x)y=0[/mm]
Umformung in DGL mit getrennten Variablen:

[mm]g_1(x)=-g(x)[/mm]
[mm]g_2(y)=y[/mm]

[mm]\Rightarrow \integral_{y_0}^{y}{\bruch{1}{u} du} = \integral_{x_0}^{x}{g(t) dt}[/mm]
[mm]\gdw \ln|y|-\ln|y_0|=-G(x)+G(x_0) [/mm] |e^(...)
[mm]\gdw \bruch{|y|}{|y_0|}=e^{-G(x)+G(x_0)}[/mm]
[mm]\gdw |y|=|y_0|*e^{-G(x)+G(x_0)}[/mm]

Ich hoffe das hat mein Problem ein wenig verständlicher gemacht.
Gruß,
Benjamin





Bezug
        
Bezug
HLDGL 1. Ordnung mit AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Sa 08.11.2008
Autor: leduart

Hallo
der Betrag steht doch da nur, weil du sonst fuer y,0 und y>0 2 Loesungen hinschreiben muesstest. Damit kannst du ihn weglassen, wenn du den ln weglaesst.
Du kannst auch das Ergebnis (ohne betrag ) in die Dgl einsetzen und siehst, dass sie erfuellt ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]