matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10H-methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - H-methode
H-methode < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

H-methode: Aufgabe zur H-methode
Status: (Frage) beantwortet Status 
Datum: 12:44 Mo 05.01.2009
Autor: xaidoos

Aufgabe
Steigung der Parabel mit der Gleichung f(x) = 2x² im Punkt (1.2|3.466).
Formuliere eine Allgemeine Aussage.

m= [mm] \bruch{f(xp+h)-(xp)}{h} [/mm] = [mm] \bruch{2(xp+h)²-2(xp)²}{h} [/mm] = [mm] \bruch{2xp²+2*2xph+2h²-2xp²}{h}=\bruch{ 2*2xph+2h²}{h}=\bruch{h(2*2xp+2h}{h} [/mm] = 4xp+2h
ist das Richtig ?
und wenn ja muss ich doch nur noch 1.2 einsetzen damit ich die steigung im Punkt habe odeR ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 05.01.2009
Autor: M.Rex

Hallo

Beachte, dass du die Steigung erst dann hast, wenn du [mm] h\to0 [/mm] laufen lässt.

Also:

[mm] m=\red{\limes_{h\rightarrow0}}\bruch{f(xp+h)-(xp)}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{2(x_{p}+h)²-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{2(x_{p}^{2}+2x_{p}h+h²)-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{2x_{p}^{2}+4x_{p}h+2h²-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{4x_{p}h+2h²}{h} [/mm]
[mm] =\limes_{h\rightarrow0}\bruch{h(4x_{p}+2h)}{h} [/mm]
[mm] =\limes_{h\rightarrow0}(4x_{p}+2h) [/mm]
Jetzt kannst du auch ohne Probleme h=0 setzen, da das h im nenner herauskürzbar geworden ist.

Also:

[mm] m=\limes_{h\rightarrow0}\bruch{2(x_{p}+h)²-2x_{p}^{2}}{h} [/mm]
[mm] =\limes_{h\rightarrow0}(4x_{p}+2h) [/mm]
[mm] =4x_{p} [/mm]

Wenn du jetzt einen Punkt gegeben hast, kannst du dann natürlich die Steigung bestimmen, indem du die x-Koordinate in die zu f(x)=2x² gehörende "Steigungsfunktion" m(x)=4x einsetzt

Marius

Bezug
                
Bezug
H-methode: Frage?
Status: (Frage) beantwortet Status 
Datum: 15:40 Di 06.01.2009
Autor: xaidoos

Könnte mir jemand noch eine Aufgabe geben zum lernen ?

Bezug
                        
Bezug
H-methode: Aufgabe
Status: (Antwort) fertig Status 
Datum: 15:47 Di 06.01.2009
Autor: Roadrunner

Hallo xaidoos!

Aufgabe
Bestimme die Steigung der Funktion $f(x) \ = \ [mm] x^3-1$ [/mm] an der Stelle [mm] $x_0 [/mm] \ = \ 2$ .


Gruß vom
Roadrunner


Bezug
                                
Bezug
H-methode: Richtig ?
Status: (Frage) beantwortet Status 
Datum: 16:16 Di 06.01.2009
Autor: xaidoos

f(x) = [mm] \bruch{(2+h)³-1-(2)³-1}{h} [/mm] = [mm] \bruch{8+4h+2h²+4h+2h²+h³-1-8-1}{h}= \bruch{8h+4h²+h³-2}{h}= \bruch{h(8+4h+h²)-2}{h} [/mm] = 8+4h+h²-2 = 6+4h+h² [mm] \limes_{0\rightarrow\infty} [/mm] f(x) = 6
richtig ?

Bezug
                                        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 06.01.2009
Autor: MathePower

Hallo xaidoos,

> f(x) = [mm]\bruch{(2+h)³-1-(2)³-1}{h}[/mm] =


Das muß doch so lauten:

[mm]f(x) = \bruch{(2+h)³-1-\left\red{(} \ (2)³-1 \right\red{)}}{h}[/mm]


> [mm]\bruch{8+4h+2h²+4h+2h²+h³-1-8-1}{h}= \bruch{8h+4h²+h³-2}{h}= \bruch{h(8+4h+h²)-2}{h}[/mm]


Den Ausdruck [mm]\left(2+h\right)^{3}[/mm] kann man mit dem binomischen Lehrsatz berechnen.


> = 8+4h+h²-2 = 6+4h+h² [mm]\limes_{0\rightarrow\infty}[/mm] f(x) = 6
>  richtig ?


Das mußt Du nochmal nachrechnen.


Gruß
MathePower

Bezug
                                                
Bezug
H-methode: nun ?
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 06.01.2009
Autor: xaidoos

f(x)= [mm] \bruch{(2+h)³-1-((2)³-1)}{h} [/mm] = [mm] \bruch{2³+3*2h+h³-1-(8-1)}{h} [/mm] = [mm] \bruch{8+6h+h³-8}{h} [/mm] = [mm] \bruch{6h+h³}{h} [/mm] = [mm] \bruch{h(6+h²)}{h} [/mm] = 6+h²

[mm] \limes_{0\rightarrow\infty} [/mm]  6   nun =?

Bezug
                                                        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Di 06.01.2009
Autor: MathePower

Hallo xaidoos,

> f(x)= [mm]\bruch{(2+h)³-1-((2)³-1)}{h}[/mm] =
> [mm]\bruch{2³+3*2h+h³-1-(8-1)}{h}[/mm] = [mm]\bruch{8+6h+h³-8}{h}[/mm] =
> [mm]\bruch{6h+h³}{h}[/mm] = [mm]\bruch{h(6+h²)}{h}[/mm] = 6+h²
>  
> [mm]\limes_{0\rightarrow\infty}[/mm]  6   nun =?


Stimmt immer noch nicht. [notok]

Das scheitert daran, daß [mm]\left(2+h\right)^{3}[/mm] nicht richtig ausmultipliziert wurde.

Wenn Du das nach dem binomischen Lehrsatz nicht machen kannst,
dann multipliziere doch einfach [mm]\left(2+h\right)*\left(2+h\right)*\left(2+h\right)[/mm] aus.


Gruß
MathePower

Bezug
                                                                
Bezug
H-methode: nun?
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 06.01.2009
Autor: xaidoos

f(x) = [mm] \bruch{8+12h+6h²+h³-8}{h}= \bruch{h(12+6h²)}{h}= [/mm] 12+6h²
[mm] \limes_{h\rightarrow\0} [/mm] (12+6h²) = 12+0  

Bezug
                                                                        
Bezug
H-methode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Di 06.01.2009
Autor: MathePower

Hallo xaidoos,

> f(x) = [mm]\bruch{8+12h+6h²+h³-8}{h}= \bruch{h(12+6h²)}{h}=[/mm]

Hier ist etwas verlorengegangen:

[mm]\bruch{8+12h+6h²+h³-8}{h}= \bruch{h(12+6h^{\red{1}}\red{+h^{2}})}{h}=12+6h+h^{2}[/mm]


> 12+6h²
> [mm]\limes_{h\rightarrow\0}[/mm] (12+6h²) = 12+0  


Das Ergebnis stimmt. [ok]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]