matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Gültigkeit des Archimedesaxiom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Gültigkeit des Archimedesaxiom
Gültigkeit des Archimedesaxiom < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gültigkeit des Archimedesaxiom: Brauche Idee, Ansatz, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:49 Do 16.11.2006
Autor: BettiBoo

Aufgabe
Man zeige, dass das Archimedesaxiom automatisch folgt, wenn die Vollständigkeit vorausgesetzt wird.
Genauer: Es sei (K, +, [mm] \* [/mm] , P) ein angeordneter Körper, in dem jeder Dedekindsche Schnitt eine Schnittzahl besitzt. Dann gilt das Archimedesaxiom.

Ich stehe hier ein wenig vor einem Rätsel. Ich habe mir hier Gedanken gemacht und bin zu dem Entschluss gekommen, dass ich den Beweis indirekt führen sollte. Also sozusagen die Negation des Archimedesaxioms annehmen. Nur stellt sich mir die Frage, a) ob ich dann auch die Vollständigkeit negieren muss (wenn ja warum) und b) wenn ich das Archimedesaxiom negiere, was muss ich dann eigentlich zeigen, dass n kleiner x ist? Bitte um Hilfe oder Ansatz oder Tipp.

Vielen lieben Dank im Voraus






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gültigkeit des Archimedesaxiom: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 16.11.2006
Autor: leduart

Hallo
Das Archimedesaxiom kann man so umformen dass man hat: ist eine Zahl z  für jedes [mm] \varepsilon>0 [/mm] kleiner als [mm] \varepsilon [/mm]
dann ist sie 0.
Und das kannst du dann aus der Vollst. direkt folgern.
Sonst kommt es drauf an, wie genau ihr das Achimedesaxiom formuliert habt.
Gruss leduart

Bezug
                
Bezug
Gültigkeit des Archimedesaxiom: Definition
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Do 16.11.2006
Autor: BettiBoo

Also wir das Archimedesaxiom folgendermaßen definiert:

Sei (K,+,*,P) ein angeordneter Körper. Wir sagen, dass K archimedisch geordnet ist (oder dass das Archimedesaxiom in K gilt), falls für jedes x [mm] \in [/mm] K ein n [mm] \in \IN [/mm] mit n [mm] \ge [/mm] x existiert.

Bezug
        
Bezug
Gültigkeit des Archimedesaxiom: Immer noch keinen Clou
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Sa 18.11.2006
Autor: BettiBoo

Leider habe ich die Anweisungen befolgt, komme aber immer noch auf nichts was das beweisen könnte. Kann man mir nicht einen Ansatz zur Lösung geben? viele Lieben Dank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]