matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGruppentafel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gruppentafel
Gruppentafel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppentafel: nicht-triviales Produkt?
Status: (Frage) beantwortet Status 
Datum: 20:48 So 15.04.2007
Autor: LittleStudi

Aufgabe
Geben Sie die multiplikative Gruppentafel eines Körpers mit 8 Elementen an. Erklären sie dabei jei ein nicht-rtiviales Prudukt in jeder nicht trivialen Zeile.

Also das könnte ich doch bspw. für den [mm] \IZ_{9} [/mm] machen der hat die Elemente 1- 8 das sind somit acht... muss ich dann jedes Element mit jedem multiplizieren bei der Gruppentafel

und was wäre bspw. so ein nicht-triviales Produkt???

Danke

        
Bezug
Gruppentafel: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 So 15.04.2007
Autor: unknown

Hallo,


nur kurz ein paar Bemerkungen.

> Geben Sie die multiplikative Gruppentafel eines Körpers mit
> 8 Elementen an. Erklären sie dabei jei ein nicht-rtiviales
> Prudukt in jeder nicht trivialen Zeile.
>  Also das könnte ich doch bspw. für den [mm]\IZ_{9}[/mm] machen der
> hat die Elemente 1- 8 das sind somit acht

Hmm, der [mm] $\IZ_9$ [/mm] ist kein Körper ($3$ ist Nullteiler). Es gibt zwar einen Körper mit neun Elementen, aber ich verstehe die Aufgabe eher so, dass der Körper acht Elemente haben soll (und nicht die multiplikative Gruppe).

> ...muss ich dann
> jedes Element mit jedem multiplizieren bei der
> Gruppentafel

Ja. Wenn Du allerdings bedenkst, dass die Multiplikation kommutativ ist, brauchst Du nur die Hälfte davon wirklich auszurechnen.

> und was wäre bspw. so ein nicht-triviales Produkt???

Ich würde darunter Produkte verstehen, bei denen kein Faktor das Null- oder das Einselement ist.


Hoffe, ich konnte Dir weiter helfen.


Bezug
        
Bezug
Gruppentafel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 So 15.04.2007
Autor: felixf

Hallo!

> Geben Sie die multiplikative Gruppentafel eines Körpers mit
> 8 Elementen an. Erklären sie dabei jei ein nicht-rtiviales
> Prudukt in jeder nicht trivialen Zeile.

>

>  Also das könnte ich doch bspw. für den [mm]\IZ_{9}[/mm] machen der
> hat die Elemente 1- 8 das sind somit acht...

Nein, du hast die $0$ vergessen, damit sind es neun...

Da $8 = [mm] 2^3$ [/mm] ist brauchst du ein unzerlegbares Polynom $f [mm] \in \IZ_2[x]$ [/mm] von Grad $3$; dann ist [mm] $\IZ_2[x]/(f)$ [/mm] ein Koerper mit [mm] $2^{\deg f} [/mm] = 8$ Elementen.

Zwei Elemente $g, h [mm] \in \IZ_2[x]/(f)$ [/mm] (dargestellt durch Polynome in [mm] $\IZ_2[x]$ [/mm] von Grad $< 3$) werden dann multipliziert, indem man $g h$ als Polynom in [mm] $\IZ_2[x]$ [/mm] berechnet und dann den Rest von $g h$ bei der Division durch $f$ nimmt.

(Man kann das auch etwas einfacher machen, indem man [mm] $\alpha$ [/mm] fuer die Restklasse von $x$ in [mm] $\IZ_2[x]/(f)$ [/mm] schreibt; dann gilt [mm] $f(\alpha) [/mm] = 0$, womit [mm] $\alpha^3 [/mm] = $ Polynom in [mm] $\alpha$ [/mm] von Grad [mm] $\le [/mm] 2$ ist. Dann kannst du zwei Elemente $a [mm] \alpha^2 [/mm] + b [mm] \alpha [/mm] + c$ und $d [mm] \alpha^2 [/mm] + e [mm] \alpha [/mm] + f$ aus [mm] $\IZ_2[x]/(f)$ [/mm] multiplizieren, indem du $(a [mm] \alpha^2 [/mm] + b [mm] \alpha [/mm] + c) (d [mm] \alpha^2 [/mm] + e [mm] \alpha [/mm] + f)$ erstmal formal ausrechnest und dann durch die Ersetzung [mm] $\alpha^3 [/mm] = $ Polynom in [mm] $\alpha$ [/mm] von Grad [mm] $\le [/mm] 2$ das Schritt fuer Schritt in etwas der Form $g [mm] \alpha^2 [/mm] + h [mm] \alpha [/mm] + i$ uebersetzt.

Beispiel $f = [mm] x^2 [/mm] + x + 1$ (nehmen wir mal Grad 2 :) ), das ist irreduzibel, und fuer [mm] $\alpha$ [/mm] gilt dann [mm] $\alpha^2 [/mm] = [mm] \alpha [/mm] + 1$ (beachte, dass in [mm] $\IZ_2$ [/mm] minus gleich plus ist). Wenn du also das Element [mm] $\alpha$ [/mm] mit dem Element [mm] $\alpha [/mm] + 1$ multiplizierst, hast du [mm] $\alpha (\alpha [/mm] + 1) = [mm] \alpha^2 [/mm] + [mm] \alpha [/mm] = [mm] (\alpha [/mm] + 1) + [mm] \alpha [/mm] = 2 [mm] \alpha [/mm] + 1 = 1$. Das waer zum Beispiel ein nicht-triviales Produkt. Ein triviales Produkt ist $1 [mm] \cdot [/mm] (1 + [mm] \alpha) [/mm] = 1 + [mm] \alpha$ [/mm] oder $0 [mm] \cdot \alpha [/mm] = 0$.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]