matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppenhomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Gruppenhomomorphismus
Gruppenhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 28.11.2010
Autor: MatheStudi7

Aufgabe
Sei f : G [mm] \to [/mm] H ein Gruppenhomomorphismus. Sei U [mm] \le [/mm] H eine Untergruppe.
Zeigen Sie, dass das Urbild von U unter f, also [mm] f^{-1}(U), [/mm] eine Untergruppe von G ist.

Hi,


Ich habe mir mal aufgeschrieben, was ich alles dazu weiß und was evtl. nützlich sein könnte:
[mm] f(e_{G})=e_{H}=e_{U}, [/mm] allerdings weiß ich nicht, ob [mm] e_{G} \in f^{-1}(U) [/mm]

Ker(f):= [mm] f^{-1}({e_{H}}) [/mm] = {a [mm] \in [/mm] G|f(a) = [mm] e_{H} [/mm] }, Ker(f) [mm] \le [/mm] G
(bringt mir das mit dem Ker(f) etwas? Ker(f) ist ja die Menge aller a [mm] \in [/mm] G, für die [mm] f(a)=e_{H}(=e_{U}) [/mm] gilt. [mm] e_{G} [/mm] wär ja so ein a. Wenn [mm] e_{G} [/mm] das einzige Element ist, welche diese Eigenschaft erfüllt, dann wüsst ich ja schonmal, dass [mm] f^{-1} [/mm] ein neutrales Element hat. Theoretisch könnten aber noch andere a [mm] \in [/mm] G diese Eigenschaft haben (,oder? ) )

Und ich weiß noch, da Gruppenhomom.: f(a*b) = f(a) [mm] \circ [/mm] f(b), a,b [mm] \in [/mm] G


Nun zum Beweis: ich überprüfe die Gruppenaxiome

(U1) Abgeschlossenheit
Seien a,b [mm] \in f^{-1}(U) \Rightarrow \exists [/mm] u,v [mm] \in [/mm] U: [mm] a=f^{-1}(u), b=f^{-1}(v). [/mm]
u [mm] \circ [/mm] v [mm] \in [/mm] U. a*b = [mm] f^{-1}(u) [/mm] * [mm] f^{-1}(v) [/mm] . So, jetzt kann ich ja aber nicht sagen, dass [mm] f^{-1}(u) [/mm] * [mm] f^{-1}(v) [/mm] = [mm] f^{-1}(u \circ [/mm] v), das gilt ja nur für f und nicht [mm] f^{-1}. \Rightarrow [/mm] weiß nicht, wie es weiter geht.

(U2) Neutrtrales Element
Das, was ich oben schon geschrieben habe: ich weiß zwar, dass [mm] f^{-1}(e_{H}=e_{U}) [/mm] = [mm] e_{G}. [/mm] Aber ob [mm] e_{G} [/mm] auch das neutrale Element in [mm] f^{-1} [/mm] weiß ich nicht.

(U3) Inverses Element.
Keine Idee :-(



Bin für jeden Tipp dankbar.


        
Bezug
Gruppenhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 28.11.2010
Autor: felixf

Moin!

> Sei f : G [mm]\to[/mm] H ein Gruppenhomomorphismus. Sei U [mm]\le[/mm] H eine
> Untergruppe.
>  Zeigen Sie, dass das Urbild von U unter f, also [mm]f^{-1}(U),[/mm]
> eine Untergruppe von G ist.
>  
>
> Ich habe mir mal aufgeschrieben, was ich alles dazu weiß
> und was evtl. nützlich sein könnte:
>  [mm]f(e_{G})=e_{H}=e_{U},[/mm] allerdings weiß ich nicht, ob [mm]e_{G} \in f^{-1}(U)[/mm]

Da [mm] $e_U \in [/mm] U$, ist doch [mm] $e_G \in f^{-1}(U)$ [/mm] per Definition von [mm] $f^{-1}(U)$! [/mm]

> Ker(f):= [mm]f^{-1}({e_{H}})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {a [mm]\in[/mm] G|f(a) = [mm]e_{H}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}, Ker(f)

> [mm]\le[/mm] G
> (bringt mir das mit dem Ker(f) etwas? Ker(f) ist ja die
> Menge aller a [mm]\in[/mm] G, für die [mm]f(a)=e_{H}(=e_{U})[/mm] gilt.

Der Kern ist [mm] $f^{-1}(\{ e_H \})$. [/mm] Du zeigst jetzt allgemeiner, dass nicht nur der Kern eine Untergruppe ist, sondern jedes Urbild einer Untergruppe von $H$.

> [mm]e_{G}[/mm] wär ja so ein a. Wenn [mm]e_{G}[/mm] das einzige Element ist,
> welche diese Eigenschaft erfüllt, dann wüsst ich ja
> schonmal, dass [mm]f^{-1}[/mm] ein neutrales Element hat.
> Theoretisch könnten aber noch andere a [mm]\in[/mm] G diese
> Eigenschaft haben (,oder? ) )

Das ist doch voellig egal. Du musst einfach zeigen, dass [mm] $e_G$ [/mm] in [mm] $f^{-1}(U)$ [/mm] liegt. Stichwort: Untergruppenkriterium.

> Und ich weiß noch, da Gruppenhomom.: f(a*b) = f(a) [mm]\circ[/mm]
> f(b), a,b [mm]\in[/mm] G
>  
>
> Nun zum Beweis: ich überprüfe die Gruppenaxiome
>  
> (U1) Abgeschlossenheit
>  Seien a,b [mm]\in f^{-1}(U) \Rightarrow \exists[/mm] u,v [mm]\in[/mm] U:
> [mm]a=f^{-1}(u), b=f^{-1}(v).[/mm]

Das ist Quark. $f$ ist i.A. nicht injektiv. Damit ist [mm] $f^{-1}(u)$ [/mm] bzw. [mm] $f^{-1}(v)$ [/mm] kein Element von $G$, sondern eine Teilmenge!

Du willst wohl schreiben: "Seien $a, b [mm] \in f^{-1}(U) \Rightarrow [/mm] f(a), f(b) [mm] \in [/mm] U$."

Wenn du jetzt $f(a)$ umbedingt $u$ und $f(b)$ umbedingt $v$ nennen willst, kannst du das gerne tun.

> u [mm]\circ[/mm] v [mm]\in[/mm] U. a*b = [mm]f^{-1}(u)[/mm] * [mm]f^{-1}(v)[/mm] . So, jetzt
> kann ich ja aber nicht sagen, dass [mm]f^{-1}(u)[/mm] * [mm]f^{-1}(v)[/mm] =
> [mm]f^{-1}(u \circ[/mm] v), das gilt ja nur für f und nicht [mm]f^{-1}. \Rightarrow[/mm]
> weiß nicht, wie es weiter geht.

So geht das auch nicht.

Du musst einfach zeigen: $f(a + b) [mm] \in [/mm] U$. Das bedeutet gerade $a + b [mm] \in f^{-1}(U)$. [/mm]

> (U2) Neutrtrales Element
>  Das, was ich oben schon geschrieben habe: ich weiß zwar,
> dass [mm]f^{-1}(e_{H}=e_{U})[/mm]

Das ist immer noch Quark! Das Urbild von [mm] $e_H$ [/mm] ist der Kern von $f$, und dieser enthaelt [mm] $e_U [/mm] = [mm] e_G$. [/mm]

> (U3) Inverses Element.
>  Keine Idee :-(

Benutze [mm] $f(a^{-1}) [/mm] = [mm] f(a)^{-1}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]