matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGruppen Isomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Gruppen Isomorphismus
Gruppen Isomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 13.05.2006
Autor: zwergline

Aufgabe
Sei (G,*) eine abelsche Gruppe und (M,°) ein Rechenbereich. Zeigen Sie: Fals ein isomorphismus  existiert so ist auch (M,°) eine abesche Gruppe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
so dass ist die Aufgabe, und ich weiß auch was ich beweisen müsste:
(M,°) ist assoziativ und kommutativ, besitz zu jedem Element ein inverses und besitz ein neutraes Element(hab ich schon).
Habe ansonsten aber keine wirklichen Ansatz da *,° beliebige Verknüpfungen sind.
Vielleicht weiß ja jemand mehr als ich.
Vielen Dank schonb ma im Vorraus.
Gruß,
zwergline

        
Bezug
Gruppen Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 13.05.2006
Autor: felixf

Hallo zwergline!

> Sei (G,*) eine abelsche Gruppe und (M,°) ein Rechenbereich.
> Zeigen Sie: Fals ein isomorphismus  existiert so ist auch
> (M,°) eine abesche Gruppe.

Ich nehme mal an, es ist gemeint, dass es eine bijektive Abbildung [mm] $\varphi [/mm] : G [mm] \to [/mm] M$ gibt mit [mm] $\varphi(a [/mm] * b) = [mm] \varphi(a) \circ \varphi(b)$ [/mm] fuer alle $a, b [mm] \in [/mm] G$?

>  so dass ist die Aufgabe, und ich weiß auch was ich
> beweisen müsste:
>  (M,°) ist assoziativ und kommutativ, besitz zu jedem
> Element ein inverses und besitz ein neutraes Element(hab
> ich schon).
>  Habe ansonsten aber keine wirklichen Ansatz da *,°
> beliebige Verknüpfungen sind.

Ich rechne dir mal die Eigenschaft abelsch vor: Sind $a, b [mm] \in [/mm] M$, so ist [mm] $\varphi^{-1}(a), \varphi^{-1}(b) \in [/mm] G$ und somit [mm] $\varphi^{-1}(a) [/mm] * [mm] \varphi^{-1}(b) [/mm] = [mm] \varphi^{-1}(b) [/mm] * [mm] \varphi^{-1}(a)$. [/mm] Also ist $a [mm] \circ [/mm] b = [mm] \varphi(\varphi^{-1}(a)) \circ \varphi(\varphi^{-1}(b)) [/mm] = [mm] \varphi(\varphi^{-1}(a) [/mm] * [mm] \varphi^{-1}(b)) [/mm] = [mm] \varphi(\varphi^{-1}(b) [/mm] * [mm] \varphi^{-1}(a)) [/mm] = [mm] \varphi(\varphi^{-1}(b)) \circ \varphi(\varphi^{-1}(a)) [/mm] = b [mm] \circ [/mm] a$.

Noch ein Tipp: Das neutrale Element aus $M$ ist gegeben durch [mm] $\varphi(e)$, [/mm] wobei $e$ das neutrale Element aus $G$ ist. Wie du zu dem inversen Element von $a [mm] \in [/mm] M$ kommst musst du nun selber herausfinden :-)

LG Felix


Bezug
                
Bezug
Gruppen Isomorphismus: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:18 So 14.05.2006
Autor: zwergline

Aufgabe
Es sei (G,*) eine abesche Gruppe und (M,°) ein Rechenbereich. Zeigen sie fas ein Isomorphismus f:G->M existiertso ist auch (M,°) eine abesche Gruppe.

Hallo,
also so wie ich diese Lösung jetzt verstehe hast du "°" als Verkettung betrachtet, das wäre ja wieder eine spezielle Verkettung. So ähnch hatte ich das auch zuerst nur habe dann festgesteltt dass das ja nicht mehr allgemein ist.
Oder hab ich das falsh verstanden?
Gruß,
zwergline

Bezug
                        
Bezug
Gruppen Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 So 14.05.2006
Autor: felixf

Hallo zwergline!

> Es sei (G,*) eine abesche Gruppe und (M,°) ein
> Rechenbereich. Zeigen sie fas ein Isomorphismus f:G->M
> existiertso ist auch (M,°) eine abesche Gruppe.

Schreib doch mal eure Definition von ``$(M, [mm] \circ)$ [/mm] Rechenbereich'' auf. Und die Definition von Isomorphismus.

>  Hallo,
>  also so wie ich diese Lösung jetzt verstehe hast du "°"
> als Verkettung betrachtet, das wäre ja wieder eine
> spezielle Verkettung. So ähnch hatte ich das auch zuerst
> nur habe dann festgesteltt dass das ja nicht mehr allgemein
> ist.

Das haengt ganz davon ab was du unter Rechenbereich verstehst. Fuer mich ist ein Rechenbereich $(M, [mm] \circ)$ [/mm] eine Menge $M$ mit einer Verknuepfung [mm] $\circ$ [/mm] auf dieser -- die Verknuepfung ist also explizit gegeben. Man weiss vielleicht nix darueber, aber man weiss das man mit [mm] $\circ$ [/mm] zwei Elemente aus $M$ verknuepfen kann und ein weiteres aus $M$ erhaelt...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]