matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gruppen
Gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:05 Sa 17.11.2007
Autor: Elli1501

Aufgabe
Es sei [mm] (G,\circ) [/mm] eine Gruppe und g [mm] \in [/mm] G ein beliebiges Element der Gruppe. Auf der Menge G sei eine Operation [mm] \Box [/mm] durch x [mm] \Box [/mm] y = x [mm] \circ [/mm] g [mm] \circ [/mm] y definiert. Man zeige:

a) [mm] (G,\Box) [/mm] ist eine Gruppe
b) [mm] (G,\Box) [/mm] und [mm] (G,\circ) [/mm] sind isomorph

ok

also bei müssen die gruppenaxiome bewiesen werden, alles klar. aber ich weiß nicht, in welcher "Form" ich das machen muss.

Bei b) fehlt mir irgendwie nur eine Erläuterung zur Definition des Isomorphismus´:
=eine Abbildung zwischen zwei mathematischen Strukturen, durch die Teile einer Struktur auf „bedeutungsgleiche“ Teile einer anderen Struktur bijektiv abgebildet werden.

hoffe mir kann da jemand eine Hilfe geben!Danke schonmal!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Sa 17.11.2007
Autor: angela.h.b.


> Es sei [mm](G,\circ)[/mm] eine Gruppe und g [mm]\in[/mm] G ein beliebiges
> Element der Gruppe. Auf der Menge G sei eine Operation [mm]\Box[/mm]
> durch x [mm]\Box[/mm] y = x [mm]\circ[/mm] g [mm]\circ[/mm] y definiert. Man zeige:
>  
> a) [mm](G,\Box)[/mm] ist eine Gruppe
>  b) [mm](G,\Box)[/mm] und [mm](G,\circ)[/mm] sind isomorph
>  ok
>  
> also bei müssen die gruppenaxiome bewiesen werden, alles
> klar. aber ich weiß nicht, in welcher "Form" ich das machen
> muss.

Hallo,

streng nach Vorschrift.

Zunächst mal mußt Du Dich vergewissern, ob die frisch definierte Verknüpfung [mm] \Box [/mm] Dich nicht aus der Menge herausführt, ob es sich also um eine innere Verknüpfung handelt.

Das geht so:

seine x,y [mm] \in [/mm] G es ist  x [mm] \Box [/mm] y=x [mm] \circ [/mm] g [mm] \circ [/mm] y [mm] \in [/mm] G, denn [mm] (G,\circ) [/mm] ist eine Gruppe.

Auch beim Beweis der eigentlcihen Axiome wirst Du Dich oft auf Eigenschaften v. [mm] (G,\circ) [/mm] berufen müssen.

>  
> Bei b) fehlt mir irgendwie nur eine Erläuterung zur
> Definition des Isomorphismus´:
> =eine Abbildung zwischen zwei mathematischen Strukturen,
> durch die Teile einer Struktur auf „bedeutungsgleiche“
> Teile einer anderen Struktur bijektiv abgebildet werden.

Ist das die Def. aus Deiner Vorlesung???

Du mußt zeigen, daß es eine bijektive Abb. [mm] \varphi: G\to [/mm] G gibt  mit [mm] \varphi (a\Box b)=\varphi (a)\circ \varphi [/mm] (b)  f.a.a,b [mm] \in [/mm] G.
Also ein bijektiver Gruppenhomomorphismus.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]