matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Gruppen
Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Di 27.10.2015
Autor: lucaszester

Aufgabe
Sei n [mm] \in [/mm] N und seien [mm] A_{1},...,A_{n }≤ [/mm] G endliche Normalteiler von G. Weiter seien die Ordnungen von  [mm] A_{1},...,A_{n } [/mm] paarweise teilerfremd.
zz.  F. a. i [mm] \in [/mm] {1,...,n} ist [mm] A_{i }∩( A_{1},...,A_{i-1},A_{i+1}..,A_{n } [/mm] ) = {1G}.

Kann mir jemand erklären wie ich das zeigen kann ?
Hab leider keine große Idee. Da die Ordnungen teilerfremd sind , hätte ich vermutet den Satz von Lagrange anzuwenden, weiß nur leider nicht wie.
LG

        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Di 27.10.2015
Autor: hippias

1. Zeige mittels Induktion nach $n$, dass es fuer jeden Primteiler $p$ von [mm] $|A_{1}\ldots A_{n}|$ [/mm] ein $i$ gibt, sodass [mm] $p\mid |A_{i}|$ [/mm] gilt. Hierfuer wird die Teilerfremdheit nicht benoetigt.

2. Angenommen [mm] $A_{i}\cap \prod_{j\neq i} A_{j}>1$. [/mm] Mache Dir klar, dass der Durchschnitt dann ein Element von Primzahlordnung enthalten muss. Dann wende den Satz von Lagrange, 1. und die Voraussetzung an, um einen Widerspruch abzuleiten.



Bezug
                
Bezug
Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 28.10.2015
Autor: lucaszester

Also ersteinmal Danke. Aber es hilft mir nicht wirklich weiter. Kann schon mit dem 1. Teil nichts anfangen. Ich wollte das eigentlich irgendwie zeigen, dass ich ein Element aus dem Schnitt nehme was nicht das Einselemenet ist und das zu Widerspruch bringen. Weiß nur noch nicht wie.

Bezug
                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mi 28.10.2015
Autor: hippias

Ein Widerspruch fuer so ein Element kannst Du schnell herleiten, indem Du Dir klar machst, das seine Ordnung teilerfremd zu sich selbst ist (siehe 2.). Diese Teilerfremdheit ist darin begruendet, dass die Gruppenordnungen [mm] $A_{i}$ [/mm] und [mm] $\prod_{j\neq i} A_{j}$ [/mm] teilerfremd sind (siehe 1.)  

Bezug
                                
Bezug
Gruppen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:58 Mi 28.10.2015
Autor: lucaszester

Angenommen ich hab ein a [mm] \not= [/mm] 1.  und a [mm] \in A_{i} \cap \produkt_{j\not=i} A_{j}. [/mm]
Dann ist a = [mm] a_{i}(\in A_{i}) [/mm] Und a = [mm] a_{1}...a_{i-1}a_{i+1}...a_{n} [/mm]  
Also ist 1 = [mm] a_{i}^{-1} .a_{1}...a_{i-1}a_{i+1}...a_{n}. [/mm]
Kann man das irgendwie zum Widersrpuch führen.

Bezug
                                        
Bezug
Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 30.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]