matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppe und Körper...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Gruppe und Körper...
Gruppe und Körper... < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe und Körper...: Frage nach der Aufgabe...
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 05.06.2009
Autor: antonicwalker

Aufgabe
Sei A[a, b] die Menge aller auf dem Interval [a, b] definierten reellwertigen Funktionen. Auf
A[a, b] werde wie folgt eine Addition „⊕“ und eine Multiplikation [mm] „\odot“ [/mm] definiert: Seien f, g ∈
A[a, b]. Dann gilt für alle x ∈ [a, b]:
(f ⊕ g)(x) := f(x) + g(x)
(f [mm] \odot [/mm] g)(x) := f(x) · g(x)
a) Welche Struktur haben (A[a, b],⊕) und (A[a, [mm] b], \odot)?Wie [/mm] sieht es mit (A[a, [mm] b],\oplus,\odot) [/mm] aus?
b) Sei
A folgendermaßen definiert: Für alle f, g ∈ A[a, b] gilt
f
A g :⇔ Für alle x ∈ [a, b] ist f(x) ≤ g(x).
Ist
A eine Ordnung auf A[a, b]?
Begründen sie jeweils ihre Antwort mathematisch präzise.

Hallo zusammen,

(a) ist mir schon klar, dass (A[a,b], [mm] \oplus) [/mm] und (A[a,b], [mm] \odot) [/mm] Gruppen sind, und (A[a,b], [mm] \oplus, \odot) [/mm] Körper ist. Es kann einfach per Definitionen der Gruppe und Körper bewiesen werden. Aber bei (b) habe ich Probleme. Vertsehe nicht, was hier Ordnung gemeint. Also kann Jemand mir helfen?! Vielen Dank!!:)

Viele Grüße

antonicwalker

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gruppe und Körper...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Fr 05.06.2009
Autor: antonicwalker


> Sei A[a, b] die Menge aller auf dem Interval [a, b]
> definierten reellwertigen Funktionen. Auf
>  A[a, b] werde wie folgt eine Addition „⊕“ und eine
> Multiplikation [mm]„\odot“[/mm] definiert: Seien f, g ∈
>  A[a, b]. Dann gilt für alle x ∈ [a, b]:
>  (f ⊕ g)(x) := f(x) + g(x)
>  (f [mm]\odot[/mm] g)(x) := f(x) · g(x)
>  a) Welche Struktur haben (A[a, b],⊕) und (A[a,
> [mm]b], \odot)?Wie[/mm] sieht es mit (A[a, [mm]b],\oplus,\odot)[/mm] aus?
>  b) Sei
> A folgendermaßen definiert: Für alle f, g ∈ A[a, b]
> gilt

f  [mm] \circ [/mm] A g :⇔ Für alle x ∈ [a, b] ist f(x) ≤ g(x).
Ist [mm] \circ [/mm] A eine Ordnung auf A[a, b]?

>  Begründen sie jeweils ihre Antwort mathematisch präzise.
>  
> Hallo zusammen,
>  
> (a) ist mir schon klar, dass (A[a,b], [mm]\oplus)[/mm] und (A[a,b],
> [mm]\odot)[/mm] Gruppen sind, und (A[a,b], [mm]\oplus, \odot)[/mm] Körper
> ist. Es kann einfach per Definitionen der Gruppe und Körper
> bewiesen werden. Aber bei (b) habe ich Probleme. Vertsehe
> nicht, was hier Ordnung gemeint. Also kann Jemand mir
> helfen?! Vielen Dank!!:)
>  
> Viele Grüße
>  
> antonicwalker
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
        
Bezug
Gruppe und Körper...: zu a)
Status: (Antwort) fertig Status 
Datum: 18:15 Fr 05.06.2009
Autor: ms2008de

Hallo,
Überleg nochmal ob [mm] (\mathcal{A}[a,b],\odot) [/mm] wirklich eine Gruppe ist, bzw. [mm] (\mathcal{A}[a,b],\odot,\oplus) [/mm] wirklich Körper ist. Hat wirklich jede Funktion f [mm] \in \mathcal{A}[a,b] [/mm] ein multiplikativ Inverses?

Viele Grüße

Bezug
                
Bezug
Gruppe und Körper...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Fr 05.06.2009
Autor: antonicwalker


> Hallo,
>  Überleg nochmal ob [mm](\mathcal{A}[a,b],\odot)[/mm] wirklich eine
> Gruppe ist, bzw. [mm](\mathcal{A}[a,b],\odot,\oplus)[/mm] wirklich
> Körper ist. Hat wirklich jede Funktion f [mm]\in \mathcal{A}[a,b][/mm]
> ein multiplikativ Inverses?
>  
> Viele Grüße

Hallo,

vielen Dank, dass du mich auf (a) aufmerksam gemacht hast. Jetzt habe ich bemerkt, dass (A[a,b], [mm] \odot) [/mm] keine Gruppe ist, weil nicht jede f eine Inverse hat.
Z.B: f(x)= 1, falls x [mm] \in [/mm] [a,t[ ; f(x)=0, falls x [mm] \in [/mm] [t,b] ,wobei t [mm] \in [/mm] [a,b]
=> Es existiert kein Inverse von f(x), damit f(x) *f-1(x) gleich Einselement gilt.

Daraus folgt, dass (A[a,b], [mm] \plus, \odot) [/mm] Ring ist.

Aber wie ist bei (b)?!

Viele Grüße

antonicwalker


Bezug
                        
Bezug
Gruppe und Körper...: Antwort
Status: (Antwort) fertig Status 
Datum: 06:07 So 07.06.2009
Autor: angela.h.b.


> Daraus folgt, dass (A[a,b], [mm]\plus, \odot)[/mm] Ring ist.

Hallo,

das ist doch Unfug: ein Ring ist ja eine Menge mit 2 Verknüpfungen, und Du hast hier nur eine.

Gruß v. Angela


Bezug
        
Bezug
Gruppe und Körper...: zu b)
Status: (Antwort) fertig Status 
Datum: 18:56 Fr 05.06.2009
Autor: ms2008de

na eine Ordnung heißt doch: Es  muss genau eine der folgenden Eigenschaften gelten:
f A g, oder g A f oder f=g, damit das ganze eine Ordnung sein kann, und das für alle x [mm] \in [/mm] [a,b]

Viele Grüße

Bezug
                
Bezug
Gruppe und Körper...: Frage..
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:21 Sa 06.06.2009
Autor: antonicwalker

Hallo,

hab über (b) nachgedacht, aber verstehe immer noch nicht so ganz.

(b) lautet:

Sei [mm] \circ [/mm] A folgendermaßen definiert: Für alle f, g ∈ A[a, b] gilt
f [mm] \circ [/mm] A g :⇔ Für alle x ∈ [a, b] ist f(x) ≤ g(x).
Ist [mm] \circ [/mm] A eine Ordnung auf A[a, b]?
Begründen sie jeweils ihre Antwort mathematisch präzise.


Annahme: [mm] \exists [/mm] f(x), damit f(x) > g(x)
Sei f(x)=2, falls [mm] \forall [/mm] x [mm] \in [/mm] [a,b]
=>Kann eine Funktion g(x) gefunden werden, dass g(x)= Einselement,
[mm] \forall [/mm] x in [a,b], damit f(x)> g(x)

aber wie kann ich es mathematisch präzise beweisen?!
Vielen Dank

Herzliche Grüße

antonicwalker

Bezug
                        
Bezug
Gruppe und Körper...: Antwort
Status: (Antwort) fertig Status 
Datum: 06:28 So 07.06.2009
Autor: angela.h.b.


> Hallo,
>  
> hab über (b) nachgedacht

Hallo,

nur nachzudenken nützt meist nichts.

Am Anfang steht immer die Definition.

Ist Dir klar, wie Ordnung definiert ist, welche Eigenschaften gelten müssen?

Du solltest die Definition, die Ihr verwendet, einmal aufschreiben. Komplett. Mit Vor- und Nachwort, sofern es das gibt.

Denn ohne die präzise Definition wird man kaum eine präzise Begründung hinbekommen.


Es hat auch einen Grund, warum ich so genau nachfrage: was unter "Ordnung" verstanden wird, variiert nämlich von Ort zu Ort, und wir sollten doch erst feststellen, was das bei Euch ist.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]