matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppe mit Nebenklassen?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Gruppe mit Nebenklassen?
Gruppe mit Nebenklassen? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe mit Nebenklassen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 So 15.11.2009
Autor: encephalon

Aufgabe
Sei (G, ∗) eine Gruppe und U ≤ G eine Untergruppe. Sei weiter g ∈ G. Die Menge
g ∗ U := { g ∗ u | u ∈ U } ⊂ G
heisst Nebenklasse von U in G mit dem Vertreter g. Beweisen Sie
(a) Es gilt U = g ∗ U genau dann wenn g ∈ U gilt.
(b) Es gilt U ∩ g ∗ U [mm] \not= [/mm] ∅ genau dann wenn g ∈ U gilt.
(c) Seien [mm] g_{1}, g_{2} [/mm] ∈ G. Es gilt [mm] g_{1} [/mm] ∗U [mm] ∩g_{2} [/mm] ∗U [mm] \not= [/mm] ∅ genau dann wenn [mm] g^{-{1}}_{1} [/mm] ∗ [mm] g_{2} [/mm] ∈ U gilt.
(d) Sei r ∈ IN und [mm] g_{1}, [/mm] . . . [mm] g_{r} [/mm] ∈ G, weiter sei auch g ∈ G. Es gilt
[mm] (g_{1} [/mm] ∗ U ∪ . . . ∪ [mm] g_{r} [/mm] ∗ U) ∩ g ∗ U [mm] \not= [/mm] ∅ genau dann wenn es ein i ∈ { 1, . . . , r } mit [mm] g^{-{1}}_{i} [/mm] ∗ g ∈ U gibt.

Hallo liebe Forenmitglieder,

Da ich hier neu bin erstmal Hallo an alle.
Nun zu meinem Problem. Ich war leider die ganze Woche erkrankt und konnte weder zum Tutorium noch zur Vorlesung gehen. Deswegen sitze ich hier vor einer Übungsaufgabe, die ich nicht begreife. Da morgen Abgabe ist wüde ich gerne wenigstens diese Aufgabe lösen, damit die Klausurzulassung nicht gefährdet wird.

Könntet ihr mir bitte behilflich sein bei dieser Aufgabe.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppe mit Nebenklassen?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 So 15.11.2009
Autor: felixf

Hallo!

[willkommenmr]

> Sei (G, ∗) eine Gruppe und U ≤ G eine Untergruppe. Sei
> weiter g ∈ G. Die Menge
>  g ∗ U := { g ∗ u | u ∈ U } ⊂ G
>  heisst Nebenklasse von U in G mit dem Vertreter g.
> Beweisen Sie
>  (a) Es gilt U = g ∗ U genau dann wenn g ∈ U gilt.
>  (b) Es gilt U ∩ g ∗ U [mm]\not=[/mm] ∅ genau dann wenn g ∈
> U gilt.
>  (c) Seien [mm]g_{1}, g_{2}[/mm] ∈ G. Es gilt [mm]g_{1}[/mm] ∗U [mm]∩g_{2}[/mm]
> ∗U [mm]\not=[/mm] ∅ genau dann wenn [mm]g^{-{1}}_{1}[/mm] ∗ [mm]g_{2}[/mm] ∈ U
> gilt.
>  (d) Sei r ∈ IN und [mm]g_{1},[/mm] . . . [mm]g_{r}[/mm] ∈ G, weiter sei
> auch g ∈ G. Es gilt
>  [mm](g_{1}[/mm] ∗ U ∪ . . . ∪ [mm]g_{r}[/mm] ∗ U) ∩ g ∗ U [mm]\not=[/mm]
> ∅ genau dann wenn es ein i ∈ { 1, . . . , r } mit
> [mm]g^{-{1}}_{i}[/mm] ∗ g ∈ U gibt.
>
> Da ich hier neu bin erstmal Hallo an alle.
>  Nun zu meinem Problem. Ich war leider die ganze Woche
> erkrankt und konnte weder zum Tutorium noch zur Vorlesung
> gehen. Deswegen sitze ich hier vor einer Übungsaufgabe,
> die ich nicht begreife. Da morgen Abgabe ist wüde ich
> gerne wenigstens diese Aufgabe lösen, damit die
> Klausurzulassung nicht gefährdet wird.
>
> Könntet ihr mir bitte behilflich sein bei dieser Aufgabe.

Nun, du musst selber auch schon was tun. Da stehen Sachen die du zeigen sollst.

Fangen wir mal mit (a) an. Du hast zwei Richtungen:

(i) aus $U = g U$ folgt $g [mm] \in [/mm] U$;

(ii) aus $g [mm] \in [/mm] U$ folgt $U = g U$.

Leg doch mal los. Bedenke, dass $e [mm] \in [/mm] U$ ist, also $g [mm] \in [/mm] g U$.

LG Felix


Bezug
                
Bezug
Gruppe mit Nebenklassen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 So 15.11.2009
Autor: rad5ive

Hallo,

ich sitze genau an der gleichen Aufgabe und ich verstehe auch nicht wie ich diese Aufgabe beweisen soll. Zwar habe ich die Mitschrift der Vorlesung aber vielleicht könnte jemand mal den Beweis für Aufgabe a zeigen, damit man das Prinzip versteht..

vielen danke im voraus

Bezug
                        
Bezug
Gruppe mit Nebenklassen?: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Mo 16.11.2009
Autor: felixf

Hallo!

[willkommenmr]

> ich sitze genau an der gleichen Aufgabe und ich verstehe
> auch nicht wie ich diese Aufgabe beweisen soll. Zwar habe
> ich die Mitschrift der Vorlesung aber vielleicht könnte
> jemand mal den Beweis für Aufgabe a zeigen, damit man das
> Prinzip versteht..

Nun, wie du eventuell in den Forenregeln gelesen hast, erwarten wir hier Loesungsansaetze und sind keine Loesungsmaschine.

Ich habe bereits einen Ansatz fuer die erste Teilaufgabe geliefert. Warum versuchst du nicht einfach mal damit etwas zu machen? Die Loesung zum einen Teil hab ich ja schon praktisch verraten.

Nehmen wir an, du hast $U = g U$ und willst zeigen $g [mm] \in [/mm] U$.

Es ist ja $g U = [mm] \{ g u \mid u \in U \}$, [/mm] und wegen $e [mm] \in [/mm] U$ gilt $g = g e [mm] \in [/mm] g U = U$: also ist $g [mm] \in [/mm] U$.

So, jetzt die andere Richtung: du musst zeigen, dass aus $g [mm] \in [/mm] U$ folgt $U = g U$. Dazu hast du zwei Inklusionen zu zeigen: $U [mm] \subseteq [/mm] g U$ und $g U [mm] \subseteq [/mm] U$. Versuch doch erstmal die zweite. Dazu nimmst du dir ein $u [mm] \in [/mm] U$ und zeigst, dass $g u [mm] \in [/mm] U$ ist. Warum gilt dies? (Was weisst du ueber Untergruppen? Bedenke dass $g$ ebenfalls ein Element in $U$ ist.)

LG Felix


Bezug
        
Bezug
Gruppe mit Nebenklassen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:50 Mo 16.11.2009
Autor: felixf

Hallo!

Wenn dir eine Antwort auf deine Frage nicht ausreicht, stelle die Frage nicht einfach wieder auf unbeantwortet, sondern schreibe zumindest eine Mitteilung warum dir die Antwort nicht reicht. Oder stelle genauere Fragen zu der Antwort.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]