matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppe?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Gruppe?
Gruppe? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Mi 25.02.2009
Autor: sunmoonlight

Aufgabe
Untersuchen Sie, ob die Menge M mit der Operation o ein Gruppoid, eine Halbgruppe, ein Monoid bzw. eine Gruppe ist:

M = [mm] \{0,1,2\}, [/mm] m [mm] \circ [/mm] n = min(m + n, 2)

Hallo,

Also Abgeschlossenheit ist vorhanden und ich nehme an das es sich um zumindest eine Halbgruppe handelt. Ich kann es aber nicht zeigen. Bin ratlos...

Danke im Voraus
mfg
sunmoonlight

        
Bezug
Gruppe?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 25.02.2009
Autor: felixf

Hallo

> Untersuchen Sie, ob die Menge M mit der Operation o ein
> Gruppoid, eine Halbgruppe, ein Monoid bzw. eine Gruppe ist:
>
> M = [mm]\{0,1,2\},[/mm] m [mm]\circ[/mm] n = min(m + n, 2)
>  
> Hallo,
>  
> Also Abgeschlossenheit ist vorhanden und ich nehme an das
> es sich um zumindest eine Halbgruppe handelt. Ich kann es
> aber nicht zeigen. Bin ratlos...

Weisst du denn was du dafuer zeigen musst? Doch $(a [mm] \circ [/mm] b) [mm] \circ [/mm] c = a [mm] \circ [/mm] (b [mm] \circ [/mm] c)$ fuer alle $a, b, c [mm] \in [/mm] M$. Fuer $a$, $b$, $c$ hast du jeweils 3 Moeglichkeiten, insgesamt also 27 Moeglichkeiten zu ueberpruefen.

Du kannst dir natuerlich auch vorher erst ueberlegen ob es ein neutrales Element gibt, dann fallen ein paar Moeglichkeiten von den oben gleich weg (wenn naemlich eins von $a$, $b$, $c$ neutral ist dann gilt immer $(a [mm] \circ [/mm] b) [mm] \circ [/mm] c = a [mm] \circ [/mm] (b [mm] \circ [/mm] c)$).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]