matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGrundraum endlich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Grundraum endlich
Grundraum endlich < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundraum endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 So 17.03.2013
Autor: sissile

Aufgabe
Bestmme (unter vernünftigen Annahmen) die Wahrscheinlichkeiten für folgende ereignisse und begründe das ergebnis
1) Die obersete Karte eines gut gemischten Kartenspiels (36 Karten, bestehend aus 4 Farben zu je 9 Bildern) ist das Her As die unterste das Kreuz As.


Grundraum= [mm] \Sigma [/mm] = [mm] \{1,..,36\}^2 [/mm]
Der Grundraum ist aber nicht endlich,wieso sollte aber
[mm] \Sigma [/mm] = [mm] \{ (i,j): 1 \le i,j \le 36 , i \not=j \} [/mm] endlich sein?
Und was ist [mm] |\Sigma| [/mm] dann?

        
Bezug
Grundraum endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 So 17.03.2013
Autor: luis52

Moin

> Grundraum= [mm]\Sigma[/mm] = [mm]\{1,..,36\}^2[/mm]
>  Der Grundraum ist aber nicht endlich,wieso sollte aber
>  [mm]\Sigma[/mm] = [mm]\{ (i,j): 1 \le i,j \le 36 , i \not=j \}[/mm] endlich

Weil er aus [mm] $36^2= [/mm] 1296$ Elementen besteht.

> sein?
>  Und was ist [mm]|\Sigma|[/mm] dann?

Die Anzahl der Elemente, also 1296.

vg Luis


Bezug
                
Bezug
Grundraum endlich: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:58 So 17.03.2013
Autor: sissile

Wieso sind das bei:
> $ [mm] \Sigma [/mm] $ = $ [mm] \{1,..,36\}^2 [/mm] $

nicht auch so viele elemente?

Bezug
                        
Bezug
Grundraum endlich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 So 17.03.2013
Autor: luis52


> Wieso sind das bei:
>  > [mm]\Sigma[/mm] = [mm]\{1,..,36\}^2[/mm]

> nicht auch so viele elemente?

Die Frage verstehe ich nicht.




Bezug
                        
Bezug
Grundraum endlich: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 19.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Grundraum endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 So 17.03.2013
Autor: sissile

>$ [mm] \Sigma_1 [/mm] $ = $ [mm] \{1,..,36\}^2 [/mm] $
>  $ [mm] \Sigma_2 [/mm] $ = $ [mm] \{ (i,j): 1 \le i,j \le 36 , i \not=j \} [/mm] $

Wieso ist [mm] \Sigma_1 [/mm] nicht endlich aber [mm] \Sigma_2 [/mm] endlich? Wie kommst du auf [mm] |\Sigma_2 [/mm] | = [mm] 36^2 [/mm] ?, Wieso gilt nicht [mm] |\Sigma_1 [/mm] | = [mm] 36^2 [/mm] ?



z.B.: Grundraum für dreimalige Werfen einer Münze
[mm] \Sigma [/mm] = [mm] \{1,2\}^3 [/mm] , [mm] |\Sigma| [/mm] = [mm] 2^3[/mm]

Bezug
                        
Bezug
Grundraum endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 17.03.2013
Autor: luis52


> >[mm] \Sigma_1[/mm] = [mm]\{1,..,36\}^2[/mm]
>  >  [mm]\Sigma_2[/mm] = [mm]\{ (i,j): 1 \le i,j \le 36 , i \not=j \}[/mm]
> Wieso ist [mm]\Sigma_1[/mm] nicht endlich aber [mm]\Sigma_2[/mm] endlich? Wie
> kommst du auf [mm]|\Sigma_2[/mm] | = [mm]36^2[/mm] ?, Wieso gilt nicht
> [mm]|\Sigma_1[/mm] | = [mm]36^2[/mm] ?
>  
>

Habe nicht genau hingeschaut: [mm] $|\Sigma_1|=36^2$, $|\Sigma_2|=36^2-36$. [/mm]

Nur so am Rande: Ein Skatspiel besteht aus 32 Karten ...

vg Luis

Bezug
                                
Bezug
Grundraum endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 So 17.03.2013
Autor: sissile

Hallo nochmal.
Aber $ [mm] \Sigma_1 [/mm] $ = $ [mm] \{1,..,36\}^2 [/mm] $ soll kein Laplace-Modell sein.
Ich frag mich warum!

Bezug
                                        
Bezug
Grundraum endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 17.03.2013
Autor: fred97


> Hallo nochmal.
>  Aber [mm]\Sigma_1[/mm] = [mm]\{1,..,36\}^2[/mm] soll kein Laplace-Modell
> sein.
>  Ich frag mich warum!


Definition:

Sei [mm] \Omega [/mm] eine endliche Menge und P ein Wahrscheinlichkeitsmaß auf der Potenzmenge von [mm] \Omega. [/mm]
Dann heißt das Paar [mm] (\Omega, [/mm] P) ein Laplace-Modell, falls für jedes [mm] \omega \in \Omega [/mm] gilt:

     [mm] P(\{\omega\})= \bruch{1}{|\Omega|}. [/mm]



Wo ist jetzt Dein Problem ?

FRED


Bezug
                                                
Bezug
Grundraum endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 So 17.03.2013
Autor: sissile

Hallo
Mein problem:
>$ [mm] \Sigma_1 [/mm] $ = $ [mm] \{1,..,36\}^2 [/mm] $

>  $ [mm] \Sigma_2 [/mm] $ = $ [mm] \{ (i,j): 1 \le i,j \le 36 , i \not=j \} [/mm] $

[mm] \Sigma_1 [/mm] soll kein Laplace-Modell sein, [mm] \Sigma_2 [/mm] soll ein Laplacemodell sein.
Ich frag mich warum?

Bezug
                                                        
Bezug
Grundraum endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Mo 18.03.2013
Autor: luis52


> Hallo
>  Mein problem:
>  >[mm] \Sigma_1[/mm] = [mm]\{1,..,36\}^2[/mm]
>  >  [mm]\Sigma_2[/mm] = [mm]\{ (i,j): 1 \le i,j \le 36 , i \not=j \}[/mm]
>  
> [mm]\Sigma_1[/mm] soll kein Laplace-Modell sein, [mm]\Sigma_2[/mm] soll ein
> Laplacemodell sein.

Wer sagt das?


Mit [mm] $\Sigma_1$ [/mm] und [mm] $\Sigma_2$ [/mm] beschreibst du vermutlich Ergebnismengen. Das sind keine Laplacemodelle. Die Antwort von Fred ist hier relevant.

Ich sehe auch nicht, was deine Diskussion der Mengen [mm] $\Sigma_1$ [/mm] und [mm] $\Sigma_2$ [/mm] mit der urspruenglichen Aufgabenstellung zu tun haben soll:

Bestmme (unter vernünftigen Annahmen) die Wahrscheinlichkeiten für folgende ereignisse und begründe das ergebnis
1) Die obersete Karte eines gut gemischten Kartenspiels (36 Karten, bestehend aus 4 Farben zu je 9 Bildern) ist das Her As die unterste das Kreuz As.


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]