matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInformatik-TrainingGrundl. Endl. Automaten (2)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Informatik-Training" - Grundl. Endl. Automaten (2)
Grundl. Endl. Automaten (2) < Training < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Informatik-Training"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grundl. Endl. Automaten (2): Reg. Ausdrücke
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 17:34 Do 16.02.2006
Autor: mathiash

Aufgabe
(1) Definiere die Klasse RE der regulären Ausdrücke über dem Alphabet [mm] \{0,1\} [/mm]
(zB durch Angabe einer BNF). Definiere die semantische Funktion [mm] \varphi\colon RE\to P(\{0,1\}^{\star}). [/mm]

(2) Zeige: Zu jedem  regulären Ausdruck R gibt es einen äquivalenten NEA A, d.h. mit [mm] L(A)=\varphi [/mm] (R).
Hinweis dazu: Führe den Beweis durch strukturierte Induktion über den Aufbau der reguláren Ausdrücke.

(3) Zeige umgekehrt: Zu jedem DEA A gibt es einen reg. Ausdruck R mit [mm] \varphi [/mm] (R)=L(A).

Hallo,

Teil 2 einer kleinen, für einen ganz speziellen Adressatenkreis geschriebenen Serie.

Ein Hinweis allgemein, damit nicht Zeit durch etwaige Schwierigkeiten verloren geht:

- Versuch(t), die Fragen so ad hoc zu beantworten. Falls das nicht klappt, so sollte ein Skript
oder so zur Hand genommen werden, dort dann konzentriert und gezielt das nachgeschaut werden, was
zur Benatwortung der Frage notwendig ist.

Pruefungslernen heisst vor allem Konzentration auf das Wesentliche und Trainieren der Intuition, damit
man die Dinge geschickt und kompakt bei sich abspeichern kann und trotzdem nicht den Kopf total zu hat.

Dies als nur einige wohlgemeinte
Anmerkungen....

Mathias

        
Bezug
Grundl. Endl. Automaten (2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 So 19.02.2006
Autor: Bastiane

Hallo Mathias...

> (1) Definiere die Klasse RE der regulären Ausdrücke über
> dem Alphabet [mm]\{0,1\}[/mm]
>  (zB durch Angabe einer BNF). Definiere die semantische
> Funktion [mm]\varphi\colon RE\to P(\{0,1\}^{\star}).[/mm]

[mm] (\{0,1\}\cup\{(,),+,^{\star}\}\cup\{\emptyset,\Lambda\},\{\},,r) [/mm] mit r:

[mm] ::=0|1|(+)|()^{\star}|()|\emptyset|\Lambda [/mm]

[mm] \varphi\colon RE\to\cal{P}(\{0,1\}^{\star}): [/mm]

[mm] \varphi(0)=0 [/mm]
[mm] \varphi(1)=1 [/mm]
[mm] \varphi(\emptyset)=\emptyset [/mm]
[mm] \varphi(\Lambda)=\{\Lambda\} [/mm] (wieso muss denn hier eine Klammer drum?)
[mm] \varphi(R_1+R_2)=\varphi(R_1)\cup\varphi(R_2) [/mm]
[mm] \varphi(R_1R_2)=\varphi(R_1)\varphi(R_2) [/mm]
[mm] \varphi(R_1^{\star})=(\varphi(R_1))^{\star} [/mm]

für R, [mm] R_1, R_2 \in [/mm] RE

> (2) Zeige: Zu jedem  regulären Ausdruck R gibt es einen
> äquivalenten NEA A, d.h. mit [mm]L(A)=\varphi[/mm] (R).
>  Hinweis dazu: Führe den Beweis durch strukturierte
> Induktion über den Aufbau der reguláren Ausdrücke.

Mmh - wie mach ich das denn?
  

> (3) Zeige umgekehrt: Zu jedem DEA A gibt es einen reg.
> Ausdruck R mit [mm]\varphi[/mm] (R)=L(A).

Hierfür müsste doch eigentlich folgendes reichen:

Sei [mm] (S,M,s_0,F) [/mm] ein DEA, dann definiere ich eine BNF folgendermaßen:
für [mm] $s\in [/mm] F$: [mm] s\to\varepsilon [/mm]
für [mm] M(s,\sigma)=p: $s\to\sigma [/mm] p$
für [mm] $M(s,\sigma)=p\in [/mm] F$: [mm] s\to\sigma. [/mm]

Aber wie bringe ich das in Worte, was das mit der Aufgabenstellung zu tun hat?
  

> Teil 2 einer kleinen, für einen ganz speziellen
> Adressatenkreis geschriebenen Serie.

Hat dieser Adressatenkreis vielleicht Mächtigkeit 1? ;-)
  

> Ein Hinweis allgemein, damit nicht Zeit durch etwaige
> Schwierigkeiten verloren geht:

Mmh - schneller ginge es doch so: ich kann mit der Aufgabe nichts anfangen, also lasse ich es bleiben...
  

> - Versuch(t), die Fragen so ad hoc zu beantworten. Falls
> das nicht klappt, so sollte ein Skript
>  oder so zur Hand genommen werden, dort dann konzentriert
> und gezielt das nachgeschaut werden, was
> zur Benatwortung der Frage notwendig ist.

Wo steht denn in unserem Skript etwas zur strukturellen Induktion?
  

> Pruefungslernen heisst vor allem Konzentration auf das
> Wesentliche und Trainieren der Intuition, damit
> man die Dinge geschickt und kompakt bei sich abspeichern
> kann und trotzdem nicht den Kopf total zu hat.
>  
> Dies als nur einige wohlgemeinte
>  Anmerkungen....

Jo - danke. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Grundl. Endl. Automaten (2): Antwort
Status: (Antwort) fertig Status 
Datum: 05:03 Mo 20.02.2006
Autor: mathiash


> Hallo Mathias...
>  
> > (1) Definiere die Klasse RE der regulären Ausdrücke über
> > dem Alphabet [mm]\{0,1\}[/mm]
>  >  (zB durch Angabe einer BNF). Definiere die semantische
> > Funktion [mm]\varphi\colon RE\to P(\{0,1\}^{\star}).[/mm]
>  
> [mm](\{0,1\}\cup\{(,),+,^{\star}\}\cup\{\emptyset,\Lambda\},\{\},,r)[/mm]
> mit r:
>  
> [mm]::=0|1|(+)|()^{\star}|()|\emptyset|\Lambda[/mm]
>  
> [mm]\varphi\colon RE\to\cal{P}(\{0,1\}^{\star}):[/mm]
>  
> [mm]\varphi(0)=0[/mm]
>  [mm]\varphi(1)=1[/mm]
>  [mm]\varphi(\emptyset)=\emptyset[/mm]
>  [mm]\varphi(\Lambda)=\{\Lambda\}[/mm] (wieso muss denn hier eine
> Klammer drum?)

Darum !

Wieso muss denn um die 0 und die 1 keine ?

Im Ernst: Von wo nach wo bildet die semantische Funktion ab ? Zu jedem [mm] R\in [/mm] RE ist doch


[mm] \varphi (R)\in P(\{0,1\}^{\star}), [/mm]

also [mm] \varphi (R)\subseteq\{0,1\}^{\star}. [/mm]

Dann musst Du wohl auch

[mm] \varphi (0)=\{0\} [/mm] und so weiter schreiben, oder ?

Konzentration !!!

>  [mm]\varphi(R_1+R_2)=\varphi(R_1)\cup\varphi(R_2)[/mm]
>  [mm]\varphi(R_1R_2)=\varphi(R_1)\varphi(R_2)[/mm]
>  [mm]\varphi(R_1^{\star})=(\varphi(R_1))^{\star}[/mm]
>  
> für R, [mm]R_1, R_2 \in[/mm] RE
>  
> > (2) Zeige: Zu jedem  regulären Ausdruck R gibt es einen
> > äquivalenten NEA A, d.h. mit [mm]L(A)=\varphi[/mm] (R).
>  >  Hinweis dazu: Führe den Beweis durch strukturierte
> > Induktion über den Aufbau der reguláren Ausdrücke.
>  
> Mmh - wie mach ich das denn?
>    

Ähhh....  [kopfschuettel]

... besprechen wir noch.

(Kurzform: Ind.Anf.: Fuer R=0, R=1, [mm] R=\emptyset, R=\Lambda [/mm] jeweils explizit NEA angeben, dann im Induktionsschritt
zB fuer [mm] R=(R_1+R_2) [/mm] annehmen, dass NEA [mm] A_i [/mm] fuer [mm] R_i [/mm] gegeben sind und beschreiben, wie man daraus einen
NEA fuer R konstruiert usw.......)

> > (3) Zeige umgekehrt: Zu jedem DEA A gibt es einen reg.
> > Ausdruck R mit [mm]\varphi[/mm] (R)=L(A).
>  
> Hierfür müsste doch eigentlich folgendes reichen:
>  
> Sei [mm](S,M,s_0,F)[/mm] ein DEA, dann definiere ich eine BNF
> folgendermaßen:
>  für [mm]s\in F[/mm]: [mm]s\to\varepsilon[/mm]
>  für [mm]M(s,\sigma)=p:[/mm]  [mm]s\to\sigma p[/mm]
>  für [mm]M(s,\sigma)=p\in F[/mm]:
> [mm]s\to\sigma.[/mm]
>  

BNF reicht nicht. BNF sind - wie Dir im November im Forum jemand richtig
erklaert hat - kontextfrei, aber i.a. nicht regulär.

Ich sag nur: An einem vergangenen Freitag in HS 1.....

> Aber wie bringe ich das in Worte, was das mit der
> Aufgabenstellung zu tun hat?
>    
> > Teil 2 einer kleinen, für einen ganz speziellen
> > Adressatenkreis geschriebenen Serie.
>  
> Hat dieser Adressatenkreis vielleicht Mächtigkeit 1? ;-)
>    

Das wäre zu testen....

> > Ein Hinweis allgemein, damit nicht Zeit durch etwaige
> > Schwierigkeiten verloren geht:
>  
> Mmh - schneller ginge es doch so: ich kann mit der Aufgabe
> nichts anfangen, also lasse ich es bleiben...
>  

Dann säßen wir heute noch in Höhlen und würden Steine kloppen....
  

> > - Versuch(t), die Fragen so ad hoc zu beantworten. Falls
> > das nicht klappt, so sollte ein Skript
>  >  oder so zur Hand genommen werden, dort dann
> konzentriert
> > und gezielt das nachgeschaut werden, was
> > zur Benatwortung der Frage notwendig ist.
>  
> Wo steht denn in unserem Skript etwas zur strukturellen
> Induktion?
>    

Es heißt ja: ''ein Skript oder so...''.

Im Skript steht dazu nichts. Sind ja auch nur Grundlagen.
Aber Beispiele zur SVI gibt es im Skript tonnenweise.


> > Pruefungslernen heisst vor allem Konzentration auf das
> > Wesentliche und Trainieren der Intuition, damit
>  > man die Dinge geschickt und kompakt bei sich abspeichern

> > kann und trotzdem nicht den Kopf total zu hat.
>  >  
> > Dies als nur einige wohlgemeinte
>  >  Anmerkungen....
>  
> Jo - danke. :-)
>  
> Viele Grüße
>  Bastiane
>  [cap]
>  

Gruss,

Mathias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Informatik-Training"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]